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Directed acyclic graph (DAG): G(I,E)

I set of vertices: I = [m] := {1, 2, . . . ,m}
I set of directed edges: E ⊆ {i ← j | i , j ∈ I}
I acyclic: G doesn’t contain any cycles i1→ i2→ · · · → id → i1

Gaussian model given by a DAG

I Linear structural equation: y = Λy + ε, i.e. yi =
∑

(j→i)∈E λijyj + εi .

I y ∈ Rm is data on the set of vertices I = [m]
I λij ∈ R is “effect” of vertex j on vertex i (λij = 0 for j 6→ i in G)
I independent noise on vertices: ε ∼ N (0,Ω), diagonal Ω ∈ PDm

I M =
{

Ψ = (id− Λ)TΩ−1(id− Λ)
}

Introducing restricted DAG (RDAG) models

Idea: Introduce symmetries on the parameters via a graph colouring c .

Motivation:
I vertex and edge symmetries appear in various applications
I natural analog of undirected coloured graphical models [1]
I decrease maximum likelihood thresholds

Maximum Likelihood (ML) estimation on a Gaussian model

I M⊆ PDm(R) parameter set of precision matrices, i.e., PΨ = N
(
0,Ψ−1

)
I Y = (Y1,Y2, . . . ,Yn) ∈ Rm×n, matrix of n i.i.d. samples
I log-likelihood fct. `Y : M→ R measures likeliness of Y
I MLE given Y : Ψ̂ ∈M such that `Y (Ψ̂) = sup Ψ∈M `Y (Ψ)

Example 1: DAG model
Consider the DAG 1 3 2. The (unrestricted) DAG model is

y1 = λ13y3 + ε1, y2 = λ23y3 + ε2, y3 = ε3,

where εi ∼ N(0, ωii) are independent.

Example 2: Simple RDAG model
Consider the coloured DAG 1 3 2 . The RDAG model is

y1 = λy3 + ε1, y2 = λy3 + ε2, y3 = ε3,

where ε1, ε2 ∼ N(0, ω) and ε3 ∼ N(0, ω′) are independent.

Remark: RDAG models include (unrestricted) DAG models

Usual DAG models arise when all vertices and all edges have distinct colours.

Example 3: Augmented sample matrix MY ,s for vertex colour s

A sample matrix Y ∈ R7×n, with rows Y (i), for RDAG model on the coloured DAG

1

3 4 5 6 7

2

has MY ,◦ =



Y (1) Y (2)

Y (3) 0
0 Y (3) + Y (5) + Y (6)

Y (5) Y (4)

Y (6) 0
Y (4) + Y (7) 0



◦

Definition: Compatible Colouring
A colouring c : I ∪ E → {colours} is compatible, if
(i) vertex colours and edge colours are disjoint
(ii) whenever c(i ← j) = c(k ← l), then c(i) = c(k).

Consequence: Obtain a partition of the edge colours
c(E ) =

⊔
s∈c(I)

prc(s) ,

where prc(s) = {c(i ← j) | (i ← j) ∈ E , c(i) = s} are
the parent relationship colours.

Notation: for vertex colour s
I αs is the number of vertices of colour s
I βs := |prc(s)| is the number of parent relationship colours for s
I M(0)

Y ,s,M
(1)
Y ,s, . . . ,M

(βs)
Y ,s are the rows of MY ,s ∈ R(βs+1)×(αsn)

I rs is the dim’n of span
{

M (1)
Y ,s, . . . ,M

(βs)
Y ,s
}
for n = 1 and generic YRm×n

I DAG case: αs = 1; βs is number of parents; rs ∈ {0, 1};
M (0)

Y ,s = Y (s); M (t)
Y ,s, t ∈ [βs] are the parent rows

Theorem 1: (Linear independence conditions for ML estimation)

Consider the RDAG model on (G, c) where colouring c is compatible, and fix
sample matrix Y ∈ Rm×n. For ML estimation given Y we have:
(a) `Y unbounded from above⇔ ∃ s ∈ c(I) : M (0)

Y ,s ∈ span
{

M (i)
Y ,s : i ∈ [βs]

}
(b) MLE exists ⇔ ∀ s ∈ c(I) : M (0)

Y ,s /∈ span
{

M (i)
Y ,s : i ∈ [βs]

}
(c) MLE exists uniquely ⇔ ∀ s ∈ c(I) : MY ,s has full row rank.

Algorithm to compute MLEs
The proof of Theorem 1 leads to a closed-form formula for MLEs in an RDAG
model, as a collection of least squares estimators.

Theorem 2: (Bounds on ML thresholds)

Consider the RDAG model on (G, c) where colouring c is compatible, and (G, c)
has no edges between vertices of the same colour. Then

max
s

⌊
rs − 1
αs − 1

⌋
+ 1 ≤ mlte ≤ max

s

⌊
βs
αs

⌋
+ 1, (1)

max
s

⌊
βs
αs

⌋
+ 1 ≤ mltu ≤ max

s
(βs + 2− rs) . (2)

Figure: We generated RDAGs on 10 vertices, with each edge present with probability 0.5 and 5
edge colours. We sampled from the distribution n ∈ {5, 10, 100, 1000, 10000} times. For each n
we generated 50 random graphs and computed the RDAG MLE and the DAG MLE.

What’s more?
I Relations to undirected coloured graphical models [2, Section 3]
I further Simulations [2, Section 6]
I Connections to Invariant Theory & Gaussian group models [2, Appendices]

Open Problem
Provide exact formulae for ML thresholds [2, Problem 5.4].
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