

# Symmetries in directed Gaussian graphical models

Visu Makam visu@umich.edu Radix Trading Europe B.V.

Philipp Reichenbach reichenbach@tu-berlin.de TU Berlin Anna Seigal aseigal@math.harvard.edu Harvard University



European Research Council Established by the European Commission

## Directed acyclic graph (DAG): G(I, E)

- ▶ set of vertices:  $I = [m] := \{1, 2, ..., m\}$
- ▶ set of directed edges:  $E \subseteq \{i \leftarrow j \mid i, j \in I\}$
- ► acyclic:  $\mathcal{G}$  doesn't contain any cycles  $i_1 \rightarrow i_2 \rightarrow \cdots \rightarrow i_d \rightarrow i_1$

## Gaussian model given by a DAG

- Linear structural equation:  $y = \Lambda y + \varepsilon$ , i.e.  $y_i = \sum_{(j \to i) \in E} \lambda_{ij} y_j + \varepsilon_i$ .
- ▶  $y \in \mathbb{R}^m$  is *data* on the set of vertices I = [m]
- λ<sub>ij</sub> ∈ ℝ is "effect" of vertex j on vertex i (λ<sub>ij</sub> = 0 for j → i in G)
  independent noise on vertices: ε ~ N(0, Ω), diagonal Ω ∈ PD<sub>m</sub>
  M = {Ψ = (id − Λ)<sup>T</sup>Ω<sup>-1</sup>(id − Λ)}

## Maximum Likelihood (ML) estimation on a Gaussian model

- ►  $\mathcal{M} \subseteq PD_m(\mathbb{R})$  parameter set of *precision matrices*, i.e.,  $P_{\Psi} = N(0, \Psi^{-1})$
- ►  $Y = (Y_1, Y_2, ..., Y_n) \in \mathbb{R}^{m \times n}$ , matrix of *n* i.i.d. samples
- ▶ log-likelihood fct.  $\ell_Y : \mathcal{M} \to \mathbb{R}$  measures likeliness of Y
- ► MLE given Y:  $\hat{\Psi} \in \mathcal{M}$  such that  $\ell_Y(\hat{\Psi}) = \sup_{\Psi \in \mathcal{M}} \ell_Y(\Psi)$

## Example 1: DAG model

Consider the DAG  $1 \leftarrow 3 \rightarrow 2$ . The (unrestricted) DAG model is

$$V_1 = \lambda_{12}V_2 + \varepsilon_1$$
  $V_2 = \lambda_{22}V_2 + \varepsilon_2$   $V_2 = \varepsilon_2$ 

### Introducing restricted DAG (RDAG) models

**Idea:** Introduce symmetries on the parameters via a graph colouring c.

#### **Motivation:**

- vertex and edge symmetries appear in various applications
- natural analog of undirected coloured graphical models [1]
- decrease maximum likelihood thresholds

 $\mathbf{y}_1 - \mathbf{x}_{13}\mathbf{y}_3 + \varepsilon_1, \qquad \mathbf{y}_2 - \mathbf{x}_{23}\mathbf{y}_3 + \varepsilon_2, \qquad \mathbf{y}_3 - \varepsilon_3,$ 

where  $\varepsilon_i \sim N(0, \omega_{ii})$  are independent.

### **Example 2: Simple RDAG model**

Consider the coloured DAG  $(1) \leftarrow [3] \rightarrow (2)$ . The RDAG model is  $y_1 = \lambda y_3 + \varepsilon_1, \quad y_2 = \lambda y_3 + \varepsilon_2, \quad y_3 = \varepsilon_3,$ where  $\varepsilon_1, \varepsilon_2 \sim N(0, \omega)$  and  $\varepsilon_3 \sim N(0, \omega')$  are independent.

Remark: RDAG models include (unrestricted) DAG models

Usual DAG models arise when all vertices and all edges have *distinct* colours.

### Example 3: Augmented sample matrix $M_{Y,s}$ for vertex colour s

A sample matrix  $Y \in \mathbb{R}^{7 \times n}$ , with rows  $Y^{(i)}$ , for RDAG model on the coloured DAG

### **Definition: Compatible Colouring**

A colouring  $c: I \cup E \rightarrow \{\text{colours}\}\$  is **compatible**, if (i) vertex colours and edge colours are disjoint (ii) whenever  $c(i \leftarrow j) = c(k \leftarrow I)$ , then c(i) = c(k).

**Consequence:** Obtain a partition of the edge colours

$$c(E) = \bigsqcup_{s \in c(I)} \operatorname{prc}(s),$$

## where $prc(s) = \{c(i \leftarrow j) \mid (i \leftarrow j) \in E, c(i) = s\}$ are the **parent relationship colours**.

### Notation: for vertex colour s

- $\triangleright \alpha_s$  is the number of vertices of colour s
- ▶  $\beta_s := |\operatorname{prc}(s)|$  is the number of parent relationship colours for s
- $\blacktriangleright M_{Y,s}^{(0)}, M_{Y,s}^{(1)}, \ldots, M_{Y,s}^{(\beta_s)} \text{ are the rows of } M_{Y,s} \in \mathbb{R}^{(\beta_s+1)\times(\alpha_s n)}$
- *r<sub>s</sub>* is the dim'n of span {*M*<sup>(1)</sup><sub>Y,s</sub>,...,*M*<sup>(β<sub>s</sub>)</sup><sub>Y,s</sub>} for *n* = 1 and generic *Y*ℝ<sup>*m×n*</sup>
   **DAG case:** α<sub>s</sub> = 1; β<sub>s</sub> is number of parents; *r<sub>s</sub>* ∈ {0,1};
  - $M_{Y,s}^{(0)} = Y^{(s)}; M_{Y,s}^{(t)}, t \in [\beta_s]$  are the parent rows

### Theorem 1: (Linear independence conditions for ML estimation)

Consider the RDAG model on  $(\mathcal{G}, c)$  where colouring c is compatible, and fix sample matrix  $Y \in \mathbb{R}^{m \times n}$ . For ML estimation given Y we have:

(a)  $\ell_Y$  unbounded from above  $\Leftrightarrow \exists s \in c(I): M_{Y,s}^{(0)} \in \operatorname{span} \{ M_{Y,s}^{(i)} : i \in [\beta_s] \}$ (b) MLE exists  $\Leftrightarrow \forall s \in c(I): M_{Y,s}^{(0)} \notin \operatorname{span} \{ M_{Y,s}^{(i)} : i \in [\beta_s] \}$ (c) MLE exists uniquely  $\Leftrightarrow \forall s \in c(I): M_{Y,s}$  has full row rank.



Figure: We generated RDAGs on 10 vertices, with each edge present with probability 0.5 and 5 edge colours. We sampled from the distribution  $n \in \{5, 10, 100, 1000, 10000\}$  times. For each n we generated 50 random graphs and computed the RDAG MLE and the DAG MLE.

### What's more?

Relations to undirected coloured graphical models [2, Section 3]

## Algorithm to compute MLEs

The proof of Theorem 1 leads to a closed-form formula for MLEs in an RDAG model, as a collection of least squares estimators.

## Theorem 2: (Bounds on ML thresholds)

Consider the RDAG model on  $(\mathcal{G}, c)$  where colouring c is compatible, and  $(\mathcal{G}, c)$  has no edges between vertices of the same colour. Then

$$\max_{s} \left[ \frac{r_{s} - 1}{\alpha_{s} - 1} \right] + 1 \leq \operatorname{mlt}_{e} \leq \max_{s} \left[ \frac{\beta_{s}}{\alpha_{s}} \right] + 1, \qquad (1)$$
$$\max_{s} \left[ \frac{\beta_{s}}{\alpha_{s}} \right] + 1 \leq \operatorname{mlt}_{u} \leq \max_{s} \left( \beta_{s} + 2 - r_{s} \right). \qquad (2)$$

- further Simulations [2, Section 6]
- Connections to Invariant Theory & Gaussian group models [2, Appendices]

## **Open Problem**

## Provide *exact* formulae for ML thresholds [2, Problem 5.4].

### References

- [1] S. Højsgaard and S. L. Lauritzen. "Graphical Gaussian models with edge and vertex symmetries". In: *Journal of the Royal Statistical Society: Series B (Statistical Methodology)* 70.5 (2008), pp. 1005–1027.
- [2] V. Makam, P. Reichenbach, and A. Seigal. "Symmetries in Directed Gaussian Graphical Models". 2021. URL: https://arxiv.org/abs/2108.10058.