Visu Makam
visu@umich.edu
Radix Trading Europe B.V.

Philipp Reichenbach
reichenbach@tu-berlin.de TU Berlin

Anna Seigal
aseigal@math.harvard.edu

European Research Council Established by the European Commissio

```
Directed acyclic graph (DAG): \mathcal{G}}(I,E
    * set of vertices: I= [m]:={1,2,\ldots,m}
    - set of directed edges: }E\subseteq{i\leftarrowj|i,j\inI
    * acyclic: \mathcal{G doesn't contain any cycles i}
Gaussian model given by a DAG
    - Linear structural equation: }y=\Lambday+\varepsilon,\mathrm{ i.e. }\mp@subsup{y}{i}{}=\mp@subsup{\sum}{(j->i)\inE}{}\mp@subsup{\lambda}{ij}{}\mp@subsup{y}{j}{}+\mp@subsup{\varepsilon}{i}{}\mathrm{ .
    - y\in\mp@subsup{\mathbb{R}}{}{m}\mathrm{ is data on the set of vertices I= [m]}],\mp@code{m}
    - }\mp@subsup{\lambda}{ij}{}\in\mathbb{R}\mathrm{ is "effect" of vertex }j\mathrm{ on vertex }i\quad(\mp@subsup{\lambda}{ij}{}=0\mathrm{ for }j\not->i\mathrm{ in G)
    - independent noise on vertices: }\varepsilon~\mathcal{N}(0,\Omega)\mathrm{ , diagonal }\Omega\in\mp@subsup{P}{m}{m
    - }\mathcal{M}={\Psi=(\textrm{id}-\Lambda\mp@subsup{)}{}{\top}\mp@subsup{\Omega}{}{-1}(\textrm{id}-\Lambda)
```


Introducing restricted DAG (RDAG) models

Idea: Introduce symmetries on the parameters via a graph colouring c.

Motivation:

- vertex and edge symmetries appear in various applications
- natural analog of undirected coloured graphical models [1]
- decrease maximum likelihood thresholds

```
Maximum Likelihood (ML) estimation on a Gaussian model
    - M}\subseteq\mp@subsup{P}{m}{}(\mathbb{R})\mathrm{ parameter set of precision matrices, i.e., }\mp@subsup{P}{\Psi}{}=N(0,\mp@subsup{\Psi}{}{-1}
    - Y}=(\mp@subsup{Y}{1}{},\mp@subsup{Y}{2}{},\ldots,\mp@subsup{Y}{n}{})\in\mp@subsup{\mathbb{R}}{}{m\timesn}\mathrm{ , matrix of n i.i.d. samples
    - log-likelihood fct. \ell \ell : M}->\mathbb{R}\mathrm{ measures likeliness of }
    - MLE given Y: \hat{\Psi}\in\mathcal{M}\mathrm{ such that }\mp@subsup{\ell}{Y}{}(\hat{\Psi})=\mp@subsup{\operatorname{sup}}{\Psi\in\mathcal{M}}{\ell}\mp@subsup{\ell}{Y}{}(\Psi)
```


Example 1: DAG model

Consider the DAG $1 \leftarrow 3 \rightarrow 2$. The (unrestricted) DAG model is

$$
y_{1}=\lambda_{13} y_{3}+\varepsilon_{1}, \quad y_{2}=\lambda_{23} y_{3}+\varepsilon_{2}, \quad y_{3}=\varepsilon_{3}
$$

where $\varepsilon_{i} \sim N\left(0, \omega_{i i}\right)$ are independent.

Example 2: Simple RDAG model

Consider the coloured DAG (1) $\leftarrow 3 \rightarrow$ (2). The RDAG model is

$$
y_{1}=\lambda y_{3}+\varepsilon_{1}, \quad y_{2}=\lambda y_{3}+\varepsilon_{2}, \quad y_{3}=\varepsilon_{3},
$$

where $\varepsilon_{1}, \varepsilon_{2} \sim N(0, \omega)$ and $\varepsilon_{3} \sim N\left(0, \omega^{\prime}\right)$ are independent.

Remark: RDAG models include (unrestricted) DAG models

Usual DAG models arise when all vertices and all edges have distinct colours.

Example 3: Augmented sample matrix $M_{Y, s}$ for vertex colour s

A sample matrix $Y \in \mathbb{R}^{7 \times n}$, with rows $Y^{(i)}$, for RDAG model on the coloured DAG

Definition: Compatible Colouring

A colouring $c: I \cup E \rightarrow$ \{colours $\}$ is compatible, if
(i) vertex colours and edge colours are disjoint
(ii) whenever $c(i \leftarrow j)=c(k \leftarrow I)$, then $c(i)=c(k)$.

Consequence: Obtain a partition of the edge colours

$$
c(E)=\bigsqcup_{s \in c(I)} \operatorname{prc}(s)
$$

where $\operatorname{prc}(s)=\{c(i \leftarrow j) \mid(i \leftarrow j) \in E, c(i)=s\}$ are the parent relationship colours.

Notation: for vertex colour s

- $\boldsymbol{\alpha}_{s}$ is the number of vertices of colour s
- $\boldsymbol{\beta}_{\boldsymbol{s}}:=|\operatorname{prc}(s)|$ is the number of parent relationship colours for s
$-\boldsymbol{M}_{\boldsymbol{Y}, s}^{(0)}, \boldsymbol{M}_{\boldsymbol{Y}, s}^{(1)}, \ldots, \boldsymbol{M}_{\boldsymbol{Y}, s}^{\left(\beta_{s}\right)}$ are the rows of $M_{Y, s} \in \mathbb{R}^{\left(\beta_{s}+1\right) \times\left(\alpha_{s} n\right)}$
- \boldsymbol{r}_{s} is the dim'n of $\operatorname{span}\left\{M_{Y, s}^{(1)}, \ldots, M_{Y, s}^{\left(\beta_{s}\right)}\right\}$ for $n=1$ and generic $Y \mathbb{R}^{m \times n}$
- DAG case: $\alpha_{s}=1 ; \beta_{s}$ is number of parents; $r_{s} \in\{0,1\}$;
$M_{Y, s}^{(0)}=Y^{(s)} ; M_{Y, s}^{(t)}, t \in\left[\beta_{s}\right]$ are the parent rows

Theorem 1: (Linear independence conditions for ML estimation)

Consider the RDAG model on (\mathcal{G}, c) where colouring c is compatible, and fix sample matrix $Y \in \mathbb{R}^{m \times n}$. For ML estimation given Y we have:
(a) ℓ_{Y} unbounded from above $\Leftrightarrow \exists s \in c(I): M_{Y, s}^{(0)} \in \operatorname{span}\left\{M_{Y, s}^{(i)}: i \in\left[\beta_{s}\right]\right\}$

$$
\begin{array}{ll}
\text { (b) } \quad \text { MLE exists } & \Leftrightarrow \forall s \in c(I): M_{Y, s}^{(0)} \notin \operatorname{span}\left\{M_{Y, s}^{(i)}: i \in\left[\beta_{s}\right]\right\} \\
\text { (c) } \quad \text { MLE exists uniquely } & \Leftrightarrow \forall s \in c(I): \quad M_{Y, s} \text { has full row rank. }
\end{array}
$$

Figure: We generated RDAGs on 10 vertices, with each edge present with probability 0.5 and 5 edge colours. We sampled from the distribution $n \in\{5,10,100,1000,10000\}$ times. For each n we generated 50 random graphs and computed the RDAG MLE and the DAG MLE.

What's more?

- Relations to undirected coloured graphical models [2, Section 3]
- further Simulations [2, Section 6]
- Connections to Invariant Theory \& Gaussian group models [2, Appendices]

Open Problem

Provide exact formulae for ML thresholds [2, Problem 5.4].

References

[1] S. Højsgaard and S. L. Lauritzen. "Graphical Gaussian models with edge and vertex symmetries". In: Journal of the Royal Statistical Society: Series B (Statistical Methodology) 70.5 (2008), pp. 1005-1027.
[2] V. Makam, P. Reichenbach, and A. Seigal. "Symmetries in Directed Gaussian Graphical Models". 2021. URL: https://arxiv.org/abs/2108. 10058.

