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Preface

Abstract

Invariant theory is a branch of algebra that is classically intertwined with compu-
tation, but it also led to important contributions in mathematics and applications
in other sciences. For example, the problem of deciding null cone membership
(NCM) has, thanks to the general abstract setting of invariant theory, manifold
applications in mathematics, physics, computer science and statistics.

In this thesis we study invariant theory in two regards: computational com-
plexity and algebraic statistics. As indicated by its title the thesis consists of
three parts.

The first part collects preliminary knowledge on invariant theory that is used
throughout the thesis. Thus, it only contains known results and concepts.

The second part focuses on the computational complexity of current geodesic
convex optimization methods for the NCM problem and its “approximate” ver-
sions: norm minimization and scaling. First, we prove that complexity parame-
ters, that capture the required precision for deciding NCM via optimization meth-
ods, are exponentially small for several important group actions. Second, in the
high precision regime the diameter (“bit complexity”) of approximate minimizers
may be exponentially large for tensor scaling. The provided bounds exclude, for
the respective group actions, polynomial running time of current geodesic meth-
ods for the three computational problems. Therefore, our results highly motivate
the search for and the advancement of new sophisticated methods for geodesic
convex optimization.

The third part builds a bridge between invariant theory and algebraic statis-
tics, which establishes novel relations to maximum likelihood estimation (ML
estimation). We connect norm minimization under a group action to maximizing
the likelihood in a statistical model, which is related to the group action. In
particular, norm minimizers yield maximum likelihood estimates. Strikingly, this
approach yields a dictionary between stability notions from invariant theory and
notions from ML estimation. We obtain fruitful applications on the interplay of
invariant theory and statistics. First, we recover known statistical results, and
even get some new characterizations, via invariant theory. Second, we obtain al-
gorithmic consequences, e.g., complexity results from invariant theory carry over
to statistics. Third, one can translate problems from statistics to invariant theory,
and vice versa. This has already been used in the literature with great benefit.
Fourth, the invariant theoretic approach fostered the development of new statis-
tical models and the understanding of their ML estimation. Namely, we study
the new concepts of Gaussian group models and of RDAG models.

v
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Zusammenfassung

Invariantentheorie ist ein Bereich der Algebra, der klassischerweise eng verbunden
ist mit Berechnungen und Algorithmen, der jedoch auch zu wichtigen Beiträgen in
der Mathematik selbst sowie ihren Anwendungsbereichen geführt hat. Zum Bei-
spiel hat das Entscheidungsproblem der Nullkegel-Zugehörigkeit (NKZ), dank des
allgemeinen, abstrakten Settings der Invariantentheorie, vielfältige Anwendungen
in Mathematik, Physik, Informatik und Statistik.

In dieser Dissertation studieren wir Invariantentheorie in zweierlei Hinsicht:
bezüglich Komplexitätstheorie und bezüglich Algebraischer Statistik. Wie der
Titel bereits andeutet besteht die Arbeit aus drei Teilen.

Der erste Teil umfasst und wiederholt wesentliche Vorkenntnisse aus der Inva-
riantentheorie. Deshalb enthält er nur bereits bekannte Resultate und Konzepte.

Der zweite Teil beschäftigt sich mit der Komplexität von aktuellen geodätisch-
konvexen Optimierungsalgorithmen für das NKZ-Problem sowie seiner „approxi-
mativen“ Versionen: Norm-Minimierung und Skalierung. Erstens zeigen wir, dass
Komplexitätsparameter, welche die nötige Präzision zum Entscheiden des NKZ-
Problems mittels Optimierungsalgorithmen erfassen, exponentiell klein sind für
mehrere wichtige Gruppenaktionen. Zweitens, im Fall von hoher Präzision kann
der Durchmesser („Bit-Komplexität“) eines approximativen Minimierers exponen-
tiell groß sein für Tensor-Skalierung. Diese bereitgestellten Schranken schlie-
ßen, für die jeweiligen Gruppenaktionen, eine polynomiale Laufzeit der aktuellen
geodätisch-konvexen Methoden für die drei genannten Probleme aus. Deshalb
motivieren die Resultate in hohem Maße die Suche nach und die Weiterentwick-
lung von ausgeklügelten Methoden für geodätisch-konvexe Optimierung.

Der dritte Teil baut eine Brücke zwischen Invariantentheorie und Algebrai-
scher Statistik, welche völlig neuartige Verbindungen zur Maximum-Likelihood-
Methode (ML Methode) etabliert. Wir verbinden Norm-Minimierung unter einer
Gruppenaktion zum Maximierungsproblem der Plausibilität in einem statisti-
schen Modell, welches in Beziehung zur Gruppenaktion steht. Insbesondere, ge-
ben Norm-Minimierer einen zugehörigen Maximum-Likelihood-Schätzer. Bemer-
kenswerterweise führt dieses Vorgehen zu einem Wörterbuch zwischen Stabilitäts-
notationen aus der Invariantentheorie und Notationen bezüglich der MLMethode.
Dieses Zusammenspiel von Invariantentheorie und Statistik trägt große Früchte.
Erstens erhalten wir bereits bekannte statistische Resultate, und manchmal sogar
ganz neue Charakterisierungen, mittels Invariantentheorie. Zweitens gibt es algo-
rithmische Folgerungen, zum Beispiel können komplexitätstheoretische Resultate
von Invariantentheorie auf die Statistik übertragen werden. Drittens kann man
Probleme der Statistik zu Problemen in Invariantentheorie übersetzen, und vice
versa. Dies wurde bereits mit großem Erfolg in anderen wissenschaftlichen Arbei-
ten verwendet. Viertens hat der Zugang mittels Invariantentheorie die Entwick-
lung von neuen statistischen Modellen sowie das Verständnis ihrer ML-Methode
gefördert. Nämlich studieren wir die neuartigen Konzepte der Gaußschen Grup-
penmodelle sowie der RDAG Modelle.
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Introduction

“Das Instrument, welches die Vermittlung bewirkt zwischen Theorie und Praxis,
zwischen Denken und Beobachten, ist die Mathematik;

sie baut die verbindende Brücke und gestaltet sie immer tragfähiger.”

David Hilbert1

Groups are amongst the most fundamental, organizing objects of mathemat-
ics, and appear all over the sciences. From a geometrical perspective, groups
provide a framework to encode symmetries and they are often studied themselves
via actions on spaces. Invariant theory studies actions of algebraic groups on
algebraic varieties, and functions on the variety that remain invariant under this
action. It is a branch of algebra that is classically intertwined with computation,
but also led to great contributions in mathematics and to applications beyond.

A prime example are Hilbert’s landmark papers [Hil90; Hil93] on classical
invariant theory. There he proved seminal results of modern algebra and alge-
braic geometry; most prominently, his Basis Theorem and the Nullstellensatz.
Interestingly, the actual objective of Hilbert’s papers was to prove a finiteness
theorem on the ring of invariants, and to provide an algorithm for computing a
generating system. For this, Hilbert introduced in [Hil93] an invariant-theoretic
key concept called the null cone. It consists of all unstable vectors, that is, vec-
tors that cannot be distinguished from zero by invariants. Unstable vectors and
further notions of stability play an important role in Geometric Invariant Theory
[MFK94] for constructing and studying quotient spaces. Strikingly, there are also
many applications beyond algebra itself as we outline below.

In recent years the null cone enjoyed a computational revival. The problem
of deciding null cone membership (NCM, see Problem 3.1.2) has been intensively
studied, leading to polynomial time algorithms in several important cases. There
are algebraic/symbolic methods for deciding NCM, as well as optimization al-
gorithms through “approximate” formulations of NCM: the Norm Minimization
Problem 3.1.3 and the Scaling Problem 3.1.4. Thanks to the general abstract set-
ting of invariant theory, these three problems have manifold applications in math-
ematics, physics, computer science and statistics; thereby connecting seemingly
unrelated (computational) problems. This unified framework and its applications
serve as a starting point and motivation of this thesis.

The objectives of this thesis are twofold. On one side, we study the com-
putational complexity of geodesic convex optimization methods for solving the
above three computational problems. On the other hand, we build a bridge be-
tween invariant theory and algebraic statistics, which establishes novel relations
to maximum likelihood estimation.

1in “Naturerkennen und Logik” (speech from 8th September 1930), see [Hil35, p. 385]

1



2 Introduction

Regarding computational complexity, a prominent example of NCM arises for
the so-called operator scaling action2, where a product of special linear groups acts
on (tuples of) matrices. The NCM problem for this action relates to non-rational
identity testing, a non-commutative analogue of the famous polynomial identity
testing problem. Remarkably, the approach through the NCM problem leads to,
both algebraic [DM17; IQS18] and numeric [AGL+18; GGOW16], deterministic
polynomial time algorithms for non-rational identity testing!3 However, neither
of the current methods is known to run in polynomial time for tensor scaling, the
higher dimensional analogue where one acts on (tuples of) tensors. In fact, the
main results in Part II prove that this is another example of the “unwritten law”
that tensors are (computationally) “more challenging” than matrices.

More precisely, we present the results of [FR21] which give exponentially bad
behaved bounds for complexity parameters of current geodesic convex optimiza-
tion methods [BLNW20; AGL+18; AMS08; Bou23]. First, a parameter capturing
the required precision for deciding NCM via optimization methods is shown to be
exponentially small for tensor scaling. Second, in the high-precision regime the
diameter, which can be interpreted as the bit-complexity of an approximate min-
imizer, may be exponentially large for tensor scaling. In contrast, these complex-
ity parameters are known to be only polynomially small (precision) respectively
polynomially large (diameter) for operator scaling. Altogether, these bounds ex-
clude polynomial time algorithms for NCM, Norm Minimization and the Scaling
Problem via current geodesic methods.

It should be noted that the latter are geodesic analogues of first and second
order methods. However, in general, first and second order methods do not even
suffice for commutative groups, where the computational problems are convex in
the usual sense. Instead, ellipsoid or interior-point algorithms are required to en-
sure polynomial time [SV14; SV19; BLNW20]. We point out that the very recent
works [Hir22; NW23] rigorously study self-concordant functions on manifolds and
[NW23] even gives (the main stage of) an interior point method. However, apply-
ing this algorithm to the Scaling problem still yields a complexity that depends
linearly on a diameter bound [NW23, Theorem 1.7]. Hence, the exponential diam-
eter for tensor scaling excludes polynomial running time, making further research
necessary [NW23, Outlook]. Altogether, our results highly motivated and keep
motivating the search for and the advancement of new sophisticated methods in
the regime of geodesic convex optimization.

The part on algebraic statistics focuses on novel relations between invari-
ant theory and maximum likelihood estimation (ML estimation), established in
[AKRS21a] and further studies in [AKRS21b; MRS21]. In particular, we add
ML estimation to the list of applications of the above computational problems.
ML estimation is a common approach to parameter estimation. That is, given a
statistical model and some data, one seeks a probability distribution in the model
that “best” fits the data. ML estimation chooses a distribution under which it

2also called left-right action
3In contrast, it remains a major open problem to solve polynomial identity testing in deter-

ministic polynomial time.



Organization 3

is most likely to observe the given data. Hereby, “most likely” is encoded by
maximizing a likelihood function, and a maximizer of that function is called a
maximum likelihood estimate (MLE). Important questions arising in ML estima-
tion are, for example: when does an MLE exist (uniquely)? How often do we
have to sample data for almost sure existence of an MLE? How can we compute
an MLE?

In this thesis we tackle these questions through invariant theory. This is
achieved by providing a dictionary between stability notions under a group ac-
tion and ML estimation on a corresponding model. For example, certain torus
actions relate to log-linear models, while the operator and the tensor scaling ac-
tion correspond to so-called matrix and tensor normal models, respectively. We
always link several notions as in

unstable
semistable
polystable
stable

 ←→


likelihood unbounded from above
likelihood bounded from above

MLE exists
MLE exists uniquely

 (1)

to each other, and for some models we even obtain a full list of equivalences.
These connections allow for three main applications.

First, they may be used to recover known results in statistics or even to obtain
new characterizations through invariant theory. Second, they yield algorithmic
consequences. Namely, we show that norm minimization under a certain group
action relates to maximizing the likelihood function over a respective model.
Thus, one can use algorithms from invariant theory in ML estimation. Moreover,
complexity results, in particular those from the thesis’ part on complexity, carry
over to statistics. Third, one can translate problems from statistics to invariant
theory, and vice versa. This has already been crucially used to compute maxi-
mum likelihood (ML) thresholds for matrix normal models [DM21] and for tensor
normal models [DMW22]. These thresholds capture how often one should at least
sample typically. Highly simplified speaking, the papers [DM21; DMW22] trans-
lated the problem on ML thresholds via (1) to a problem in terms of stability
notions. Then they solved the latter using invariant-theoretic techniques and
translated the result back.

As a summary, invariant theory embraces the thesis’ main contributions on
computational complexity and algebraic statistics. A prominent link is provided
through the three computational problems NCM, Norm Minimization and Scal-
ing. Moreover, important group actions such as torus actions as well as operator
and tensor scaling action play a prominent role throughout the thesis.

Organization

As suggested by its title, the thesis consists of three parts. Part I, containing
Chapters 1 and 2, collects the required prerequisites from invariant theory. In
Part II (Chapters 3 – 5) we present the results on computational complexity. Fi-
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nally, Part III (Chapters 6 – 10) contains the content regarding algebraic statistics.
In the following we give short descriptions of each chapter.

Chapter 1 presents the necessary background on algebraic groups, matrix Lie
groups and the representation theory of these groups. In particular, it defines the
concept of (topological) stability notions.

Chapter 2 collects criteria to test stability notions: the Hilbert-Mumford Cri-
terion, King’s Criterion for actions on quivers, Popov’s Criterion for solvable
groups and, of particular importance for this thesis, the Kempf-Ness Theorem.

Chapter 3 gives an introduction to computational invariant theory and its
manifold applications. This gives us the opportunity to embed and locate the
contributions of this thesis in the research area. We introduce the three computa-
tional problems of main interest: Null Cone Membership (NCM) 3.1.2, NormMin-
imization 3.1.3 and the Scaling Problem 3.1.4. Furthermore, we discuss known
algorithms for these problems and their computational complexity. The latter
serves as a preparation of the next two chapters.

Chapter 4 treats the precision parameters weight margin and gap to solve
NCM via optimization methods. We prove (exponentially) small bounds on these
parameters for tensor scaling, polynomial scaling and quiver actions, cf. [FR21].

Chapter 5 presents the main result from [FR21] on the diameter : it can
be exponentially large for tensor scaling. We discuss its implications, related
literature, and mention the main proof ideas.4

Chapter 6 gives a general introduction to maximum likelihood (ML) esti-
mation, focusing on discrete models and on Gaussian models. It prepares the
following four chapters.

Chapter 7 presents results from [AKRS21b]: we link toric invariant theory to
ML estimation for log-linear models, a huge class of discrete models. In particular,
norm minimizers under the action yield the MLE and we obtain a dictionary
between some notions in (1).

Chapter 8 sets the stage for the final two chapters. It shows that any Gaussian
model, that is closed under positive scalars, admits relations to invariant theory
which we call the weak correspondence, [MRS21]. The latter provides a dictionary
between some notions of (1) and shows that norm minimizers give rise to an
MLE, and any MLE is obtained this way. The assumptions notably go beyond
the setting of groups.

Chapter 9 is based on [AKRS21a] and studies the new concept of Gaussian
group models. These are Gaussian models induced by a group (action). The
group structure allows to extend the results from Chapter 8. In particular, the
weak correspondence can be strengthened to an (almost) complete dictionary for
two types of models. The first class are Gaussian group models given by a Zariski
closed self-adjoint group, and the second consists of Gaussian graphical models
on transitive directed acyclic graphs (TDAGs).

4All main proof ideas for the diameter bound are due to my co-author Cole Franks. For
brevity, we refrain from including all details in this thesis.
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Chapter 10 presents the work [MRS21]: it studies symmetries in Gaussian
graphical models on directed acyclic graphs (DAGs). The symmetries are given
by a graph colouring and the respective models are called restricted DAG (RDAG)
models. We characterize ML estimation for these models, bound their ML thresh-
olds and compare them to their undirected analogues. The theory was initially
inspired by the results of Chapter 9. Indeed, we can extend the weak correspon-
dence from Chapter 8 to a full dictionary, and we discuss connections to Gaussian
group models from Chapter 9.

Notation and Conventions

We always work over the real or over the complex numbers. Often we do so
in parallel and in that case K ∈ {R,C} denotes the ground field. Its group of
units is K×. For a K-vector space V , the ring of K-linear endomorphisms is
denoted End(V ) and its group of units, i.e., the group of K-linear automorphisms
is denoted by GL(V ). The projective space of V is denoted by P(V ). Vectors in
Km are usually viewed as column vectors. The space of m1 ×m2 matrices with
entries in K is denoted by Km1×m2 . Similarly, Km1 ⊗K · · · ⊗K Kmd is the space of
tensors of order d. Often, we suppress the field over which we are tensoring.

As an important convention, we equip5 the spaces of (column) vectors, of
matrices and of tensors with their standard Euclidean/Hermitian inner product
and its induced norm. In particular, Km1×m2 is equipped with the trace inner
product, which induces the Frobenius norm. Furthermore, we follow the conven-
tion of [BFG+19] that for K = C an inner product is C-linear in the second(!)
component, and semilinear in the first.

All algebraic groups considered in this thesis are affine, and the same usually
applies to varieties. We stress that we work with the K-points of algebraic groups
(and varieties). This requires some caution when K = R and occasionally we
have to consult results from real algebraic geometry. All rational representations
of algebraic groups are assumed to be finite-dimensional.

We stress that the default topology in this thesis (even in algebraic geometric
settings) is the Euclidean topology. We explicitly indicate the Zariski topology,
e.g., by writing “Zariski closed”. Accordingly, the Euclidean closure is indicated
by (·), while the Zariski closure is (·)

Z
.

Manifolds and Lie groups are always considered to be smooth.
When working with Gaussian distributions, we stress that we always assume

the mean to be zero and known. Furthermore, by convention we work with the
concentration matrix 6, i.e., the inverse of the covariance matrix.

Let us briefly collect further frequently used notation. A detailed list of sym-
bols is provided at the end of the thesis.

Usually, ε is a positive real number. The imaginary unit is denoted by i. We
denote the set {1, 2, . . . ,m} by [m]. For i ∈ [m], the ith canonical unit vector

5if not stated otherwise
6also called precision matrix
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in Km (with ith entry one, and all other entries zero) is denoted ei. Similarly,
Eij ∈ Km1×m2 is the matrix with entry one at position (i, j) and all other entries
are zero. The m × m identity matrix is denoted Im and the all-ones vector by
1m ∈ Km. Moreover, for i ∈ [m] we set

εi := ei −
1

m
1m .

The transpose of a matrix is indicated by (·)T and the Hermitian transpose
by (·)†. For M ∈ Km×m, its determinant is det(M) and tr(M) is the trace of M .

Finally, we use the following useful notation, which is quite common in statis-
tics. For a tensor v = (vijk) ∈ (Cm)⊗3 define the “slice sums”

vi,j,+ :=
m∑
k=1

vijk, vi,+,+ :=
m∑

j,k=1

vijk, v+,+,+ :=
m∑

i,j,k=1

vijk, etc.

Similarly, for a vector x ∈ Km, x+ denotes the sum over all entries of x, and for
a matrix M ∈ Km1×m2 , Mi,+ is the ith row sum, M+,j the jth column sum, and
M+,+ the sum over all entries ofM . Of course, this notation can also be extended
to tensors of order d ≥ 4.
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Chapter 1

Algebraic Group Actions

This chapter collects required preliminaries and thereby fixes notation. The
presented material covers a wide range, because we need algebraic as well as
analytic methods. The aims of the chapter are to allow readers from diverse
contexts to follow, and to keep the thesis as self-contained as possible.

Usually, we skip proofs and refer to the literature. References for further
reading are provided at the beginning of each section. A reader familiar with the
presented material may skip this chapter and only consult it when referenced.

Organization. Section 1.1 recalls linear algebraic groups while Section 1.2 in-
troduces their analytic analogue of (matrix) Lie groups. Afterwards, Section 1.3
reviews aspects of the representation theory of these groups. Finally, Section 1.4
defines the (topological) stability notions and discusses their relation to Geomet-
ric Invariant Theory.

1.1 Linear Algebraic Groups

We briefly review the required knowledge on linear algebraic groups. For a de-
tailed treatment the reader is referred to the many textbooks available: e.g.,
classical books are [Bor91; Hum75; Spr98], a treatment in scheme language is
given in [Mil17; Wat79], and a combined treatment of algebraic groups and Lie
groups can be found in [Bor06; GW09; OV90; Pro07].

Basic Definitions and R-structures

In this thesis we often study real and complex algebraic settings in parallel. For
this, it is convenient to use the concepts of R-structures on complex vector spaces
and varieties, compare [Bor91, AG §11 and §12] or [Spr98, Chapter 11]. Given
a (not necessarily finite dimensional) complex vector space V , an R-structure on
V is an R-vector space VR ⊆ V such that scalar extension of the inclusion yields
VR ⊗R C = V . A C-linear map f : V → W of C-vector spaces with R-structures
is an R-morphism or defined over R , if f(VR) ⊆ WR.

Now, let X be an affine variety over C with coordinate ring C[X]. An R-
structure on X is an R-structure R[X] on C[X], which is an R-subalgebra of
C[X]. An affine complex variety with R-structure is simply called a R-variety .
Usually, we identify X with its set XC of C-rational points, which correspond to
C-algebra morphisms C[X] → C. If X is an R-variety, then XR denotes the set
of R-rational points, which correspond to C-algebra morphisms C[X] → C that

9
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are defined over R. We note that XR is a real algebraic variety. Moreover, a
morphism ϕ : X → Y of R-varieties is called an R-morphism or defined over R,
if its associated map ϕ∗ : C[Y ]→ C[X] on coordinate rings is defined over R.

Note that starting from a real algebraic situation, we naturally obtain by
scalar extension a complex algebraic setting with natural R-structures.

Next, we recall linear algebraic groups, which are ubiquitous in this thesis.
We remind the reader that in the whole thesis K ∈ {R,C}.

Definition 1.1.1 (Linear algebraic group). A linear algebraic group G over K is
an affine algebraic group over K. That is, G is an affine variety over K endowed
with a group structure such that multiplication and inversion are morphisms of
varieties over K. N

A morphism of algebraic groups over K is a morphism of varieties that is also
a group morphism. Such a morphism is an isomorphism of algebraic groups if its
inverse is as well a morphism of algebraic groups.

Any Zariski closed subgroup G ⊆ GLm(K) is a linear algebraic group over K.
Actually, the naming originates from the fact that any linear algebraic group
over K is isomorphic to a Zariski closed subgroup of some GLm(K), see [Bor91,
Proposition 1.10] or [Wat79, Theorem in §3.4]. Since all algebraic groups in this
thesis are affine, we often drop the term “linear”.

Example 1.1.2. The following are linear algebraic groups over K.

1. The general linear group GLm(K) of invertible m×m matrices over K.

2. The special linear group SLm(K) := {g ∈ GLm(K) | det(g) = 1}.

3. The intersection G ∩H of two Zariski closed subgroups G,H ⊆ GLm(K).

4. Any torus (K×)m is linear algebraic. In particular, the groups

GTm(K) := {g ∈ GLm(K) | g is diagonal}
and STm(K) := GTm(K) ∩ SLm(K) ∼= (K×)m−1

are linear algebraic groups.

5. The additive group (Km,+).

6. The group Bm(K) of invertible upper triangular matrices.

7. The group Um(K) := {g ∈ Bm(K) | ∀ i ∈ [m] : gii = 1} of unipotent upper
triangular matrices.

8. The groups of orthogonal respectively special orthogonal matrices over K:

Om(K) := {g ∈ GLm(K) | gTg = Im} and SOm(K) := Om(K)∩SLm(K).

9. The (semi-)direct product of two linear algebraic groups. ♦
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Example 1.1.3. The groups of unitary respectively special unitary matrices

Um :=
{
g ∈ GLm(C) | g†g = Im

}
and SUm := Um ∩ SLm(C)

are not algebraic over C. However, after identifying C ∼= R2 we see that Um and
SUm are real algebraic subgroups of GL2m(R). ♦

Examples like GLm(K), GTm(K) and Om(K) indicate that one can often study
the real and complex situation in parallel, which is especially useful for Part III
on algebraic statistics. In order to do so, we extend R-structures to the setting
of algebraic groups.

An R-group is a complex algebraic group G that is an R-variety such that
multiplication and inversion are defined over R. Thus, given an R-group G, its
K-rational points GK form an algebraic group over K, i.e., G indeed encodes a
real and a complex algebraic group at the same time and dimRGR = dimCGC.
Note that all groups given in Example 1.1.2 for K = C are naturally R-groups.
E.g., GLm(C) is an R-group with R-rational points GLm(R). An R-morphism of
R-groups G and G′ is a morphism ϕ : G→ G′ of algebraic groups that is defined
over R.

Zariski and Euclidean identity component

Given an algebraic group G over K, the Zariski identity component G◦,Z is the
Zariski connected component of G that contains the identity.

Proposition 1.1.4 ([Bor91, Proposition 1.2]). Let G be a complex algebraic
group. Then G◦,Z is a normal subgroup of finite index in G whose cosets are
the Zariski connected as well as irreducible components of G. If G is an R-group,
then G◦,Z is defined over R so that (GR)◦,Z = (G◦,Z)R.

Since all points of an algebraic group G over K are non-singular, G possesses
a canonical structure of a Lie group over K, compare [OV90, Sections 3.1.2 and
2.3.4] and Theorem 1.2.4 below. This will become more apparent in Section 1.2.
As an upshot, G carries a natural Euclidean topology.

Now, the Euclidean identity component G◦ is the Euclidean connected compo-
nent of (the Lie group) G that contains the identity. Since the Euclidean topology
is finer than the Zariski topology, it holds that G◦ ⊆ G◦,Z and depending on K
we have the following.

1. For K = C, one always has equality G◦ = G◦,Z.

2. For K = R, the inclusion G◦ ⊆ G◦,Z may be strict.

The first item follows from the facts that G◦,Z is irreducible, and that any ir-
reducible complex affine variety is connected in the Euclidean topology [Sha13,
Theorem 7.1]. The upcoming example provides a strict containment in the real
case. Consequently, we need to be careful in the real case whether we mean the
Zariski or Euclidean identity component.
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Example 1.1.5. The real algebraic group GLm(R) is irreducible and therefore
Zariski connected. However, it has two Euclidean connected components, namely

GL+
m(R) = {g ∈ GLm(R) | det(g) > 0}

and GL−m(R) = {g ∈ GLm(R) | det(g) < 0}.

In particular, GLm(R)◦ = GL+
m(R)  GLm(R) = GLm(R)◦,Z. ♦

Nevertheless, also in the real setting the Euclidean identity component G◦
is a normal subgroup, and its cosets are the finitely many (see next theorem)
Euclidean connected components of G.

Theorem 1.1.6 ([Whi57, Theorem 3]). A real algebraic variety V ⊆ Rm has
finitely many Euclidean connected components.

We note that the preceding theorem holds more generally for semialgebraic
subsets of Rm, compare [BCR98, Theorem 2.4.5].

Properties of Morphisms of Algebraic Groups

Proposition 1.1.7. Let ϕ : G→ G′ be a morphism of complex algebraic groups.

(a) ϕ(G) is a Zariski closed subgroup of G′. If ϕ is an R-morphism of R-groups,
then ϕ(G) is defined over R.

(b) ϕ
(
G◦,Z

)
= ϕ(G)◦,Z.

(c) ker(ϕ) is a Zariski closed normal subgroup of G. If ϕ is an R-morphism of
R-groups, then ker(ϕ) is defined over R.

(d) dimCG = dimC ker(ϕ) + dimC ϕ(G). If ϕ is an R-morphism of R-groups,
then dimRGR = dimR ker(ϕ)R + dimR ϕ(G)R as real algebraic groups.

Proof. Parts (a), (b) and the first part of (d) are [Bor91, Corollary 1.4], while
(c) follows from [Spr98, Propositions 2.2.5(i) and 12.1.3]. The second part of (d)
follows from dimCH = dimRHR for any R-group H.

Regarding parts (a) and (b) of Proposition 1.1.7 the upcoming example stresses
the following. In general, one may have ϕ(GR)  ϕ(G)R and ϕ(G◦,ZR )  ϕ(G)◦,ZR ,
and the image of R-points ϕ(GR) does not need to be Zariski closed. Still, ϕ(GR)
is well-behaved as we shall see in Corollary 1.2.6.

Example 1.1.8 (taken from [Bor06, §5.2]). Consider the surjective R-morphism

χ : GLm(C) 7→ C×, g 7→ det(g)2

of Zariski connected R-groups. It is not surjective on the R-rational points, as

χ(GLm(R)) = R>0  R× = χ(GLm(C))R.

We see that χ(GLm(R)) is not real algebraic, but only semialgebraic. ♦
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Algebraic Group Actions

Let G be an algebraic group over K and V an affine variety over K. A group
(left-)action of G on V is a map

α : G× V → V, (g, v) 7→ α(g, v) =: g · v

such that id ·v = v and (gh) · v = g · (h · v) hold for all v ∈ V and g, h ∈ G. An
algebraic group action of G on V is a group action α that is also a morphism of
varieties over K. As usual, we define the orbit of v and the stabilizer of v as

G · v :=
{
g · v | g ∈ G

}
and Gv :=

{
g ∈ G | g · v = v

}
, (1.1)

respectively. Note that g ·v−v = 0 gives polynomial equations in the entries of g,
since the action is algebraic. Consequently, the stabilizer Gv is a Zariski closed
subgroup of G, i.e., is itself an algebraic group over K. In this thesis we focus on
the following specific case of algebraic group actions.

Definition 1.1.9 (Rational Representation). Let G be an algebraic group over K
and V a finite dimensional K-vector space. A rational representation is a mor-
phism π : G → GL(V ) of algebraic groups over K. Equivalently, the induced
K-linear action

G× V → V, (g, v) 7→ g · v := π(g)(v)

is algebraic. Note that K-linear algebraic actions of G on V are in one to one
correspondence with rational representations G→ GL(V ). N

Of course, if G is a complex algebraic R-group and V a complex affine R-
variety, an algebraic R-action is an algebraic action α that is an R-morphism. If
applicable, this allows to encode algebraic actions over R and C at the same time.

The one-dimensional representations of a group are of particular interest.

Definition 1.1.10 (Character). LetG be a complex algebraic group. A character
of G is an algebraic group morphism χ : G → C× = GL1(C). The set of all
characters of G is denoted X(G). It becomes an abelian group (written additively)
via (χ+ χ′)(g) := χ(g)χ′(g) for all g ∈ G. If G is an R-group, then the subgroup
of characters defined over R is denoted XR(G). N

Next, we collect some properties of real and complex orbits.

Proposition 1.1.11 ([Bor91, Proposition I.1.8]). Let G be a complex algebraic
group acting algebraically on a complex affine variety V . The orbit G · v of v ∈ V
is Zariski-open in its Zariski-closure. Its boundary consists of orbits of strictly
lower dimension. In particular, orbits of minimal dimension are Zariski-closed.

A subset U of a complex affine variety V with U being Zariski open in UZ has
Euclidean closure U = U

Z; see [Wal17, Corollary 1.26] or [Kra84, Section AI.7.2].
Thus, an important consequence of Proposition 1.1.11 is the following.

Corollary 1.1.12. Let G be an algebraic group over C acting algebraically on a
complex affine variety V . For v ∈ V , the Euclidean and the Zariski closure of the
orbit coincide: G · v = G · vZ.
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Remark 1.1.13. We point out that Proposition 1.1.11 and Corollary 1.1.12 fail
over R. For this, consider the character given in Example 1.1.8 as an R-algebraic
action of G = GLm(C) on V = C. For v = 1 ∈ VR, the orbit GR · v = R>0 is
not Zariski open in its Zariski closure R = VR, and GR · v = R≥0  R = GR · v

Z.
Moreover, we have the strict containment

GR · v = R>0  R× = (G · v) ∩ VR,

of the real orbit in the R-rational points of the complex orbit. Here, (G · v) ∩ VR
is the union of two real orbits, namely GR · v and GR · (−1). O

Actually, it is a general fact that (G · v) ∩ VR is a finite union of real orbits.

Proposition 1.1.14 ([BH62, Proposition 2.3]). Let G be a connected complex
algebraic R-group, π : G → GL(V ) a rational representation defined over R and
v ∈ V . Denote the Euclidean identity component of GR by (GR)◦. If (G · v) ∩ VR
is not empty, then it is a finite union of (GR)◦-orbits, which are Euclidean closed
if G · v is Euclidean closed.

Classes of Linear Algebraic Groups

We end this section by presenting different types of linear algebraic groups. Since
we usually work with algebraic subgroups G ⊆ GLm(K), some definitions are ad-
hoc and do not follow usual definitions, but are rather equivalent characterizations
that require a proof.

Based on [Bor91, Propositions 8.2 and 8.4] we define the following.

Definition 1.1.15. Let G be an algebraic group over C. We say G is diagonal-
izable if G is isomorphic to a Zariski closed subgroup of GTm(C). We say G is
a torus , if T is isomorphic to some (C×)m ∼= GTm(C). If G is a diagonalizable
R-group, we call G split over R if G is R-isomorphic to a Zariski closed subgroup
of GTm(C). N

Example 1.1.16 (Non-split torus, [Bor91, §8.16]). We have an isomorphism

SO2(C) =

{(
a −b
b a

)∣∣∣∣ a, b ∈ C, a2 + b2 = 1

}
→ C×,

(
a −b
b a

)
7→ a+ ib

of complex algebraic groups. Thus, T := SO2(C) is a complex torus. It is not
split over R: TR = SO2(R) is the compact unit circle, which is not isomorphic to
the non-compact set R× = (C×)R. ♦

We note the following. All diagonalizable R-groups in this thesis will be R-
split, so we usually drop the term “R-split”. Moreover, if we have a real algebraic
group G and say it is diagonalizable, then we mean that the complex algebraic
group obtained by scalar extension is R-split diagonalizable.

We collect properties of diagonalizable groups and their character groups.

Proposition 1.1.17. Let G be a complex diagonalizable R-group.
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(a) If H is a Zariski closed subgroup of G, then any character χ ∈ X(H) extends
to a character on G. [Bor91, Proposition 8.2(c)]

(b) G is split over R if and only if XR(G) = X(G). [Bor91, Corollary 8.2]

(c) The character groupM := X(G) is a finitely generated abelian group ([Spr98,
Corollary 3.2.4]) and X(G◦,Zar) = M/M tor, where M tor denotes the torsion
subgroup of M . ([Spr98]: 3.2.5 together with proof of Corollary 3.2.7)

(d) G is a torus if and only if it is Zariski connected. In this case X(G) = Zm,
where m is such that G ∼= (C×)m. [Bor91, Proposition 8.5]

(e) If G is R-split diagonalizable, then it is isomorphic to the direct product of
an R-split torus and a finite group. [Bor91, Proposition 8.7]

Diagonalizable groups are a special case of so-called solvable groups. Thanks
to [Bor91, Theorem 15.4] we give the following ad-hoc definition.

Definition 1.1.18 (Solvable Group). An algebraic group G over K is called
(K-split) solvable if it is isomorphic to a Zariski closed subgroup of Bm(K). N

All solvable groups considered in this thesis are split over K, and we usually
drop this term. Another special case of solvable groups are unipotent groups.

Definition 1.1.19 (Unipotent Group). Let G be an algebraic group over K. We
say G is unipotent , if it is isomorphic to a Zariski-closed subgroup of Um(K). N

The preceding ad-hoc definition is justified by [Bor91, Corollary 4.8] (or
[Wat79, Theorem in 8.3]).

Proposition 1.1.20 ([Wat79, Corollary in 8.3]). Let U be a unipotent group.
Then X(U) = 0.

Definition 1.1.21 (Unipotent Radical). Let G be a complex algebraic group.
The unipotent radical Ru(G) is the maximal Zariski closed, connected, normal
unipotent subgroup of G. N

Definition 1.1.22 (Reductive Group). Let G be a linear algebraic group over C.
We call G a reductive group if its unipotent radical is trivial, i.e., Ru(G) = {id}.
A real linear algebraic group is called reductive, if the complex group obtained
by scalar extension is reductive. N

We stress that we do not assume a reductive group to be connected, as is done
in some literature.

Example 1.1.23. The following are reductive groups over K.

1. GLm(K) and SLm(K).

2. Om(K) and SOm(K).

3. Any diagonalizable group (in particular, any torus) over K is reductive.

4. The direct product of two reductive groups over K. ♦
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Example 1.1.24 (Non-reductive groups). The additive group Km is unipotent
and hence not reductive. Similarly, Um(K) for m ≥ 2 is not reductive; note that
U1(K) is trivial. The group Bm(K) of invertible upper triangular matrices is not
reductive for m ≥ 2, as its unipotent radical Um(K) is non-trivial. ♦

Any algebraic group over K admits the following decomposition, because K
has characteristic zero.

Theorem 1.1.25 (Levi-type decomposition, [Mos56]). Let G be a linear alge-
braic group over K with unipotent radical U . Then there is a reductive group R
over K such that G is the semi-direct product of R and U : G ∼= R n U . In
particular, a solvable group is the semi-direct product of a diagonalizable group
and its unipotent radical.

Example 1.1.26. One has Bm(K) = GTm(K)n Um(K). ♦

1.2 Matrix Lie Groups and Lie Algebras

In this section we collect preliminary knowledge on Lie groups and their Lie
algebras. For convenience and brevity, we restrict to so-called matrix Lie groups.
This ensures a concrete approach, which is sufficient for this thesis. For further
details we refer to textbooks such as [Hal15; Kna96; Lee13], and for a combined
treatment of Lie groups and algebraic groups to [Bor06; GW09; OV90; Pro07].

Matrix Lie Groups

Definition 1.2.1 (Matrix Lie group, [Hal15, Definition 1.4]).
A matrix Lie group is a Euclidean closed subgroup G of GLm(C).1 N

Remember that a Lie group in the abstract sense is a smooth manifold with a
group structure such that multiplication and inversion are smooth maps. More-
over, a morphism of Lie groups is a group morphism that is smooth. Similarly as
for algebraic groups, the Euclidean connected component of a (matrix) Lie group
containing the identity is denoted G◦.

As suggested by the name, any matrix Lie group is a Lie group [Hal15, Corol-
lary 3.45]. This result was first proven by John von Neumann. More generally,
one has the following theorem due to Élie Cartan.

Theorem 1.2.2 (Closed Subgroup Theorem, [Lee13, Theorem 20.12]).
Let G be a Lie group and H ⊆ G a Euclidean closed subgroup. Then H is an
embedded Lie subgroup of G.

Example 1.2.3. Let K ∈ {R,C}. The following groups are matrix Lie groups.

1. Any Zariski closed subgroup G ⊆ GLm(K) is a matrix Lie group, since
it is Euclidean closed in GLm(K), and hence in GLm(C). In particular,
all groups in Example 1.1.2 are matrix Lie groups. Moreover, any linear
algebraic group over K is isomorphic to a matrix Lie group.

1We stress that we mean the complex general linear group. But, of course, any Euclidean
closed subgroup of GLm(R) is a Euclidean closed subgroup of GLm(C).
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2. The groups Um and SUm from Example 1.1.3 are Euclidean closed in GLm(C)
and hence matrix Lie groups.

3. The intersection G ∩ H of two matrix Lie groups G,H ⊆ GLm(C) is a
matrix Lie group.

4. Let G ⊆ GLm1(C) and H ⊆ GLm2(C) be matrix Lie groups. Under the
block-diagonal embedding

G×H ↪→ GLm1+m2(C), (g, h) 7→
(
g 0
0 h

)
the direct product G×H is a matrix Lie subgroup of GLm1+m2(C). ♦

Regarding Example 1.2.3 Item 1, one has the following general statement.

Theorem 1.2.4 ([OV90, Theorem 6 in §3.1.2]). Any complex (real) algebraic
group is a complex (real) Lie group of the same dimension.

In general, the image of a Lie group morphism need not be a Lie group.
However, in the real algebraic setting this is true and provides an analogue of
Proposition 1.1.7(a) in the real situation, also compare Example 1.1.8. Due to
the lack of an explicit reference, we provide proofs.

Proposition 1.2.5. Let ϕ : G→ G′ be a morphism of real linear algebraic groups.
Then ϕ(G) is a closed Lie subgroup of G′.

Proof. Set H := ϕ(G). We can consider G as a real algebraic subgroup of some
GLm(R) ⊆ Rm×m ∼= Rm2 , and similarly for G′. In particular, we can view them
as matrix Lie groups.2 By Theorem 1.2.2, the Euclidean closure H ⊆ G′ is a
closed Lie subgroup. Hence, it suffices to show that H = H. For this, we need
several results from Real Algebraic Geometry and refer to [BCR98].

Since ϕ is a morphism of real algebraic groups, its image H is semialgebraic as
a consequence of Tarski-Seidenberg, [BCR98, Proposition 2.2.7]. Thus, H ⊆ G′

and H\H are semialgebraic as well. There is a natural notion of (local) dimension
of a semialgebraic set [BCR98, Section 2.8]. We have

dim
(
H\H

)
< dimH = dimH

as semi-algebraic sets [BCR98, Propositions 2.8.2 and 2.8.13]. If H\H 6= ∅ then
the Lie group H has points of different local dimension in the sense of semialge-
braic sets. But the local dimension in the semialgebraic sense is equal to the local
dimension in the manifold sense (i.e., the dimension of the tangent space at the
point); compare proof of [BCR98, Proposition 2.8.14]. This contradicts the fact
that dimThH = dim Lie

(
H
)
for all h ∈ H. Therefore, H\H must be empty.

Corollary 1.2.6. Let ϕ : G→ G′ be an R-morphism of complex linear algebraic
R-groups. Then ϕ(GR) is a closed, semialgebraic Lie subgroup of G′R, respectively
of ϕ(G)R. It holds that dimϕ(GR) = dimϕ(G)R and (ϕ(G)R)◦ ⊆ ϕ(GR).

2They are also Lie groups by Theorem 1.2.4



18 Chapter 1. Algebraic Group Actions

Proof. On the level of real points we have ϕR : GR → G′R, a morphism of real
algebraic groups. By Proposition 1.2.5 and its proof, ϕ(GR) is a closed, semialge-
braic Lie subgroup of G′R and so also of ϕ(G)R. It remains to show dimϕ(GR) =
dimϕ(G)R. We have

dimGR = dim ker(ϕ)R + dimϕ(G)R as real algebraic groups
dimGR = dim ker(ϕR) + dimϕ(GR) as Lie groups.

The first equality is Proposition 1.1.7(d). The second follows since ϕR is of con-
stant rank as a morphism of Lie groups [OV90, Theorem 2 in §1.1.6], and its image
ϕ(GR) is a Lie group. Clearly, ker(ϕR) = ker(ϕ)R. We deduce dimϕ(GR) =
dimϕ(G)R, because real algebraic groups have the same dimension as when
viewed as a Lie group. Finally, ϕ(GR) ⊆ ϕ(G)R and the equality of dimensions
yield (ϕ(G)R)◦ ⊆ ϕ(GR).

Lie Algebras

We introduce Lie algebras of matrix Lie groups. For this, we denote the expo-
nential of a matrix X ∈ Km×m by exp(X) or also by eX .

Definition 1.2.7 (Lie algebra). Let G ⊆ GLm(C) be a matrix Lie group. The
Lie algebra of G is

Lie(G) :=
{
X ∈ Cm×m | ∀ t ∈ R : exp(tX) ∈ G

}
and we equip it with the Lie bracket [X, Y ] := XY − Y X. N

We collect some properties of Lie(G).

Proposition 1.2.8. Let G ⊆ GLm(C) be a matrix Lie group.

(a) Lie(G) is a R-vector space and [X, Y ] ∈ Lie(G) for all X, Y ∈ Lie(G). With
the latter bracket Lie(G) becomes a real Lie algebra. Furthermore, Lie(G)
is the tangent space at the identity of G (in the sense of smooth manifolds).

(b) If G is Zariski closed in GLm(C), then Lie(G) is a C-vector space and
hence a complex Lie algebra. In this case, Lie(G) is the tangent space at
the identity of G (in the sense of algebraic geometry).

(c) If H ⊆ GLm(C) is a matrix Lie group, then Lie(G∩H) = Lie(G)∩Lie(H).

(d) For all X ∈ Lie(G), eX lies in the Euclidean identity component G◦.

Proof. The first part of (a) is [Hal15, Theorem 3.20] and the second part is [Hal15,
Corollary 3.46]. Item (b) is [Wal17, Theorem 2.8]. Part (c) is an immediate
consequence of the definition, and part (d) is [Hal15, Proposition 3.19].

Example 1.2.9 ([Hal15, Section 3.4]). We list some common Lie algebras.

1. Lie
(

GLm(K)
)

= Km×m

2. Lie
(

SLm(K)
)

= {X ∈ Km×m | tr(X) = 0}
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3. Lie
(

GTm(K)
)

= {X ∈ Km×m | X diagonal matrix}
4. Lie

(
Om(K)

)
= {X ∈ Km×m | XT = −X}, the space of skew-symmetric

matrices. Note that Lie
(

Om(K)
)

= Lie
(

SOm(K)
)
as any skew symmetric

matrix has trace zero.

5. Lie(Um) = {X ∈ Cm×m | X† = −X} = i Symm(C), the space of skew-
Hermitian matrices. Here, i ∈ C denotes the imaginary unit and Symm(C)
the space of m×m Hermitian matrices.

6. Consider GTm(C) ∩ Um. Using Proposition 1.2.8(c) we obtain that

Lie(GTm(C) ∩ Um) =
{
i diag(x) | x = (x1, . . . , xm) ∈ Rm

}
.

Hence, we can identify iLie(GTm(C)∩Um) = {diag(x) | x ∈ Rm} with Rm.
Note that under this identification the Frobenius norm becomes the usual
Euclidean norm on Rm.

7. Set TK := STm(C) ∩ Um. Similarly to (6) we obtain that

Lie(TK) =
{
i diag(x) | x = (x1, . . . , xm) ∈ Rm, x+ = x1 + . . .+ xm = 0

}
.

Thus, we can identify iLie(TK) = {diag(x) | x ∈ Rm, x+ = 〈1m, x〉 = 0}
with 1

⊥
m, the orthogonal complement of the all-ones vector 1m in Rm. ♦

Given real Lie algebras g and h, a morphism of Lie algebras is a R-linear
map Π: g → h such that Π([X, Y ]) = [Π(X),Π(Y )] holds for all X, Y ∈ g.
Given a morphism of matrix Lie groups one naturally obtains a morphism of the
respective Lie algebras by considering the differential at the identity.

Theorem 1.2.10 ([Hal15, Theorem 3.28]). Let G and H be matrix Lie groups,
and π : G→ H a Lie group morphism. Then there exists a unique R-linear map
Π: Lie(G) → Lie(H) such that π(eX) = eΠ(X) holds for all X ∈ Lie(G). The
map Π has the following additional properties:

1. Π(gXg−1) = π(g)Π(X)π(g)−1 for all X ∈ Lie(G), g ∈ G.
2. Π([X, Y ]) = [Π(X),Π(Y )] for all X, Y ∈ Lie(G).

3. Π(X) = d
dt

∣∣
t=0

π(etX) for all X ∈ Lie(G).

Self-adjoint Groups

We review Zariski closed self-adjoint groups. This is motivated by the fact that
reductive subgroups of GLm(K) are, up to conjugation, the Zariski closed self-
adjoint subgroups; compare Theorem 1.3.10 below. At the end, we present im-
portant connections to Riemannian geometry.

Definition 1.2.11 (Self-adjoint Group). A subgroupG ⊆ GLm(K) is self-adjoint,
if for all g ∈ G one has g† ∈ G. (Note that g† = gT if K = R.)

More generally, let V be a K-vector space equipped with an inner product 〈·, ·〉
(which is Hermitian if K = C). A subgroup G ⊆ GL(V ) is called self-adjoint
if for all g ∈ G the adjoint g∗ with respect to 〈·, ·〉 is contained in G. Thus,
G ⊆ GLm(K) is self-adjoint if it is self-adjoint with respect to the standard inner
product on Km. N
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Example 1.2.12. The following groups are Zariski closed and self-adjoint.

1. The groups GLm(K), SLm(K),GTm(K), STm(K),Om(K) and SOm(K) are
all Zariski closed and self-adjoint subgroups of GLm(K).

2. The intersection G∩H of two Zariski closed self-adjoint subgroups G,H ⊆
GLm(K) is Zariski closed and self-adjoint.

3. LetG ⊆ GLm1(K),H ⊆ GLm2(K) be Zariski closed and self-adjoint. Similar
to Example 1.2.3 Item 4, the direct product G×H is a Zariski closed self-
adjoint subgroup of GLm1+m2(K) via block-diagonal embedding. ♦

Remark 1.2.13. For the following compare [Wal17, p. 39]. One can identify
GLm(C) canonically with GL2m(R) via

GLm(C)→ GL2m(R), g = a+ i b 7→
(
a −b
b a

)
where a, b ∈ Rm×m. Note that under this identification the Hermitian transpose
becomes the transpose, and that the group of unitary matrices Um is mapped to
the group O2m(R) of orthogonal matrices. Moreover, under the above identifica-
tion any (Zariski closed) self-adjoint subgroup G ⊆ GLm(C) can be viewed as a
(Zariski closed) self-adjoint subgroup of GL2m(R).

Note that Zariski closed self-adjoint subgroups G ⊆ GLm(K) are called sym-
metric in [Wal17]. We refrain from using the latter term to avoid confusion with
the usual symmetric groups consisting of permutations. O

In the following we deal with some important properties of Zariski closed self-
adjoint subgroups. We denote by Symm(K) := {X ∈ Km×m | X† = X} the space
of symmetric respectively Hermitian matrices. Recall that Km×m is equipped
with the trace inner product, if not stated otherwise.

Proposition 1.2.14. Let G ⊆ GLm(K) be a Zariski closed self-adjoint subgroup.
Set K := {g ∈ G | g†g = Im} and p := Lie(G) ∩ Symm(K). Then

(a) K is a maximal compact subgroup of G.

(b) If K = C, then T := (G ∩ GTm(K))◦ is a maximal torus of G, and TK :=
T ∩K is a maximal compact torus of K.

(c) Lie(G) = Lie(K) ⊕ p is an orthogonal decomposition with respect to the
Euclidean inner product (X, Y ) 7→ Re(tr(X†Y )) on Km×m.3 If K = C then
p = iLie(K).

Proof. Part (a) is a consequence of [Wal17, Theorem 2.29] and part (b) follows
from [Wal17, Theorem 2.21]. For (c), note that p consists of symmetric (re-
spectively Hermitian) matrices while Lie(K) consists of skew-symmetric (respec-
tively skew-Hermitian) matrices. If K = C, then Lie(G) = Lie(K) ⊕ iLie(K)
by [Wal17, Theorem 2.12] and iLie(K) consists of Hermitian matrices. Hence,
iLie(K) = Lie(G) ∩ Symm(K) = p.

3Here Re denotes the real part. For K = R, this is the usual inner product on Rm×m. Over
C we need to adjust as tr(X†Y ) ∈ iR for X Hermitian and Y skew-Hermitian.
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Example 1.2.15. Let G := GLm(K). Then K := {g ∈ G | g†g = Im} equals
Om(R) if K = R, and K = Um if K = C. Moreover, Lie(K) is the set of skew-
symmetric respectively skew-Hermitian matrices, compare Example 1.2.9, while
p = Symm(K) is the set of symmetric respectively Hermitian matrices. So indeed,
if K = C then p = Symm(K) = iLie(K). ♦

Next, we recall the polar decomposition [Hal15, Section 2.5]. We denote by
PDm(C) the cone of Hermitian positive definite matrices, and by PDm(R) the
cone of symmetric positive definite matrices. The map

Symm(K) = {X ∈ Km×m | X† = X} → PDm(K), X → eX

is a diffeomorphism. In particular, the logarithm log(Ψ) ∈ Symm(K) is well-
defined for all Ψ ∈ PDm(K). For G = GLm(K) set K := {g ∈ G | g†g = Im}.
Then the polar decomposition is given by the diffeomorphism

K × Symm(K)→ GLm(K), (k,X) 7→ keX .

In particular, any g ∈ G can be uniquely written as g = kp, where k ∈ K and
p ∈ PDm(K). The polar decomposition holds more generally for any Zariski
closed self-adjoint subgroup.

Theorem 1.2.16 (Polar Decomposition, [Wal17, Theorems 2.12 and 2.16]).
Let G ⊆ GLm(K) be Zariski closed and self-adjoint, K = {g ∈ G | g†g = Im} and
p = Lie(G) ∩ Symm(K). Then

K × p→ G, (k,X) 7→ keX (1.2)

is a diffeomorphism. In particular, any g ∈ G can be uniquely written as g = kp,
where k ∈ K and p ∈ P := G ∩ PDm(K). Moreover, G is connected if and only
if K is connected.

As an interesting consequence any (not necessarily Zariski closed) subgroup
lying in between G◦ and G is self-adjoint.

Corollary 1.2.17. Let G ⊆ GLm(K) be Zariski closed and self-adjoint. Con-
sider a subgroup H ⊆ G with G◦ ⊆ H. Then H is self-adjoint and the polar
decomposition can be carried out in H.

Proof. Define K and p as in Theorem 1.2.16 and consider h ∈ H ⊆ G. By
Theorem 1.2.16, there exist k ∈ K and X ∈ p such that h = k exp(X). We have
exp(X) ∈ G◦ ⊆ H by Proposition 1.2.8(d) and hence k = h exp(X)−1 ∈ H. We
deduce h† = exp(X†)k† = exp(X)k−1 ∈ H.

Now, we briefly recall some Riemannian geometry of PDm(K); see [Bha07] or
[BH99, Chapter II.10]. We denote by Ψ1/2 ∈ PDm(K) (or by

√
Ψ) the square root

of Ψ ∈ PDm(K); that is the unique matrix in PDm(K) whose square equals Ψ.
Viewing PDm(K) as an open real submanifold of Symm(K) one can define a
Riemannian metric on PDm(K) via

〈X, Y 〉Ψ := tr
(
Ψ−1XΨ−1Y

)
,
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where X, Y are in the tangent space TΨ PDm(K) ∼= Symm(K) at Ψ. Note that

〈X,X〉Im = ‖X‖2 and 〈X, Y 〉Ψ =
〈
Ψ−1/2XΨ−1/2,Ψ−1/2YΨ−1/2

〉
Im
.

For Ψ,Θ ∈ PDm(K), the Riemannian manifold PDm(K) has a unique geodesic
line with γ(0) = Ψ and γ(1) = Θ:

γ : R→ PDm(K), t 7→ Ψ1/2etXΨ1/2 (1.3)

where X := log(Ψ−1/2ΘΨ−1/2). We call γ([0, 1]) the geodesic segment between Ψ
and Θ.4 Consequently, the induced distance function on PDm(K) is

d(Ψ,Θ) =
∥∥ log

(
Ψ−1/2ΘΨ−1/2

)∥∥.
In particular, we have d(Im,Ψ) = ‖ log(Ψ)‖.

A subset B ⊆ PDm(K) is called geodesically convex , if it contains the geodesic
segment between any two point in B. We say an embedded submanifold M ⊆
PDm(K) is totally geodesic5, if any geodesic line of PDm(K) that intersects M in
two points is entirely contained in M .

Note that GLm(K) acts transitively (from the right) on PDm(K) via (Ψ, g) 7→
g†Ψg and the stabilizer of Im is K = {g ∈ GLm(K) | g†g = Im}.6 Furthermore,
PDm(K) = {g†g | g ∈ GLm(K)} = GLm(K) · Im. From this one can deduce that
the Riemannian manifold G/K is isometric to PDm(K). More generally, we have
the following.7

Theorem 1.2.18 ([BH99, Theorem II.10.58]). Let G ⊆ GLm(K) be a Zariski
closed self-adjoint subgroup. Set P := G ∩ PDm(K), K := {g ∈ G | g†g = Im}
and p := Lie(G) ∩ Symm(K). Then

(i) P = exp(p) = {g†g | g ∈ G}.
(ii) P is a totally geodesic submanifold of PDm(K) and diffeomorphic to G/K.

(iii) P is a CAT(0) symmetric space.8

Conversely, if P ′ is a totally geodesic submanifold of PDm(K) with Im ∈ P ′, then
G := {g ∈ GLm(K) | g†P ′g = P ′} is a Euclidean closed self-adjoint subgroup of
GLm(K) such that P ′ = G ∩ PDm(K).

Remark 1.2.19. For consulting [BH99] we point out the following. In [BH99]
a reductive subgroup G ⊆ GLm(R) is a Euclidean closed self-adjoint subgroup
in our sense, see [BH99, Definition 10.56]. However, the assumptions in [BH99,
Theorem II.10.58] are different from ours. First, [BH99, Theorem II.10.58] is only
stated over R, but the complex case is actually a special case by Remark 1.2.13,
also see [BH99, Example II.10.57 (2)]. Second, the assumptions on G are slightly
different, but this is justified by [BH99, Lemma II.10.59]. O

4One should think of the geodesic segment as a curve representing the shortest path between
Ψ and Θ.

5also called geodesically complete
6Of course, one can also consider the left action g · Ψ = gΨg†. However, the right action

appears naturally in Part III on algebraic statistics.
7I thank Harold Nieuwboer for pointing out the reference [BH99, Theorem II.10.58].
8We do not give a definition but point out that such spaces have a rigid geometry that is

very useful for optimization techniques.
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An important application of Theorem 1.2.18 is that norm minimization un-
der G is a geodesically convex optimization problem as follows.

Definition 1.2.20. Let M ⊆ PDm(K) be a totally geodesic embedded subman-
ifold, and f : M → R a smooth map. We say f is geodesically convex , if it is
convex along all geodesics contained in M . N

Example 1.2.21. The following two functions are geodesically convex on PDm(K),
and hence on all totally geodesic submanifolds of PDm(K).

1. For a fixed vector v ∈ Km, consider

fv : PDm(K)→ R, Ψ 7→ 〈v,Ψv〉 = ‖Ψ1/2v‖2.

Then Fv := log fv is geodesically convex [BFG+19, Proposition 3.13], and
hence also fv is.9 Thus, for fixed v ∈ Km and G ⊆ GLm(K) a Zariski closed
self-adjoint subgroup, the optimization problems

inf
g∈G
‖gv‖2 = inf

g∈G
〈v, g†gv〉 and inf

g∈G
log
(
‖gv‖2

)
are geodesically convex on P = {g†g | g ∈ G}. This observation is impor-
tant in Section 2.2 and Part II.

2. The two functions PDm(K) → R, Ψ 7→ ± log det(Ψ) are geodesically con-
vex. Indeed, for a geodesic line γ as in (1.3) consider

h(t) := ± log det(γ(t)) = ± log det(Ψ)± log det
(
etX
)
.

Using det(exp(tX)) = exp(t tr(X)) one computes that h′(t) = ± tr(X) and
h′′(t) = 0 for all t ∈ R. The latter yields that h is convex. ♦

1.3 Representation Theory

We recall required knowledge on representation theory. First, we present exam-
ples of representations that are studied in this thesis. Afterwards, we connect
reductive groups to Zariski closed self-adjoint subgroups, which justifies our re-
striction to the latter case. Finally, we review weights and roots. Further material
on representation theory is provided, e.g., by [Bor06; FH91; Hal15; OV90; Pro07].

Basic Definitions and Examples

We briefly recall some standard terminology on group representations. Consider
a group G (not necessarily endowed with further structure) and let K ∈ {R,C}.

A representation of G on the K-vector space V is a group morphism π : G→
GL(V ). Equivalently, G acts K-linearly on V and we write g · v := π(g)(v),
where g ∈ G and v ∈ V . A representation π is called faithful if it is injective. If
G has further structure, then one usually requires additional properties on π: a

9A logarithmically convex function is convex.
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representation of a matrix Lie group is additionally assumed to be a Lie group
morphism. If G is an algebraic group over K, one considers rational represen-
tations as in Definition 1.1.9. Note, that if we view an algebraic group over K
as a (matrix) Lie group, then any rational representation is smooth and hence a
representation of the (matrix) Lie group.

If % : G → GL(W ) is a representation on the K-vector space W , then the
direct sum of π and % is defined as

π ⊕ % : G→ GL(V ⊕W ), g 7→
(
(v, w) 7→ (π(v), %(w))

)
.

The n-fold direct sum of π is denoted π⊕n. A morphism of representations is
a K-linear map f : V → W that is G-equivariant , i.e., f

(
π(g)(v)

)
= %(g)

(
f(v)

)
holds for all v ∈ V and all g ∈ G. The representations π and % are isomorphic,
if there exists a bijective morphism of representations between them.10

A subrepresentation is a K-vector subspace W ⊆ V that is invariant under G,
i.e., g·u ∈ U for all g ∈ G and all u ∈ U . A representation π : G→ GL(V ) is called
simple11 if its only subrepresentations are {0} and V . It is called semisimple12 if
it is a direct sum of simple representations.

Now, assume G ⊆ GLm(C) is a matrix Lie group and π : G → GL(V ) a
representation of G. Then we obtain a Lie algebra morphism Π: Lie(G) →
End(V ) via the differential, compare Theorem 1.2.10. Such a morphism Π is
called a representation of the Lie algebra Lie(G). One can define the above
concepts similarly for representations of Lie algebras, but this is not needed here.

Of particular importance in representation theory is the adjoint representa-
tion.

Example 1.3.1 (Adjoint Representation). Let G be a matrix Lie group. The
adjoint representation of G is

Ad: G→ GL(Lie(G)), g 7→ (X 7→ gXg−1).

It induces via the differential the adjoint representation of Lie(G)

ad: Lie(G) 7→ End(Lie(G)), X 7→ (Y 7→ [X, Y ]),

compare [Hal15, Proposition 3.34]. ♦

Next, we present several important examples of group representations, that
are studied in this thesis. We point out that these are all rational representations
defined over K of a reductive group over K. We present these representations
in terms of their K-linear algebraic action of G on V . Moreover, we note that
one can, of course, replace SL always with GL in these examples. However, the
actions of (products of) SL are usually the ones we are interested in this thesis,
also compare Example 1.4.3 below.

10Note that the inverse of such a morphism is automatically K-linear and G-equivariant.
11also called irreducible
12also called a completely reducible representation
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Example 1.3.2 (Left Multiplication). The group G = SLm(K) acts algebraically
on Km via left multiplication, i.e., g · v = gv for g ∈ G and v ∈ Km. Note that
the n-fold direct sum of this representation is isomorphic (via (Km)⊕n ∼= Km×n)
to the left multiplication of G on Km×n: g · Y = gY , where Y ∈ Km×n. ♦

Example 1.3.3 (Left-right Action). The left-right action of G = SLm1(K) ×
SLm2(K) on V = (Km1×m2)n is given by

g · Y :=
(
g1Y1g

T
2 , . . . , g1Yng

T
2

)
,

where g = (g1, g2) ∈ G and Y = (Y1, . . . , Yn) ∈ V . We stress that the transpose
gT2 is also considered for K = C to ensure an algebraic action. Using the Hermitian
transpose g†2 would involve complex conjugation, which prevents the action G×
V → V to be a polynomial function in the coordinates of g and Y . ♦

It is convenient to use the Kronecker product for the upcoming example.

Definition 1.3.4 (Kronecker product of matrices). The Kronecker product A⊗B
of two matrices A ∈ Km×n and B ∈ Kp×q is a matrix of size mp×nq. It is defined
as the following m× n block matrix, where each block has size p× q,

A⊗B :=

A11B · · · A1nB
... . . . ...

Am1B · · · AmnB

 ∈ K(mp)×(nq).

We index its rows by (i, k) where i ∈ [m] and k ∈ [p], and its columns by (j, l),
where j ∈ [n] and l ∈ [q]. Note that by definition the rows are ordered as follows:
(i1, k1) < (i2, k2) if and only if i1 < i2, or (i1 = i2 and k1 < k2). The same applies
to the columns. The entry of A⊗B at index ((i, k), (j, l)) is AijBkl.

If one views A and B as linear maps, then the Kronecker product A⊗B is a
representing matrix13 for the tensor product of these linear maps. N

We are now able to introduce a natural action on tensors. It contains Exam-
ples 1.3.2 and 1.3.3 as special cases.

Example 1.3.5 (Tensor Scaling). The group G = SLm1(K)×· · ·×SLmd(K) acts
algebraically on V = Km1 ⊗ · · · ⊗Kmd by K-linear extension of

(g1, . . . , gd) · (v1 ⊗ · · · ⊗ vd) = g1(v1)⊗ · · · ⊗ gd(vd),

where gi ∈ SLmi(K) and vi ∈ Kmi . There is a unique way to identify V ∼= Km1···md

such that the tensor scaling action corresponds to the representation

πm1⊗···⊗md : G→ GLm1···md(K), (g1, . . . , gd) 7→ g1 ⊗ · · · ⊗ gd,

where g1⊗· · ·⊗gd denotes the Kronecker product as introduced in Definition 1.3.4.
Of course, the n-fold direct sum π⊕nm1⊗···⊗md corresponds to the simultaneous action
of G on n many tensors.

13With respect to certain ordered bases on Km ⊗Kp and Kn ⊗Kq.
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We note that for d = 1 this is just the action by left multiplication. Moreover,
if d = 2 then π⊕nm1⊗m2

is isomorphic to the left-right action from Example 1.3.3.
This will be explained in Example 9.1.6.

We speak of the tensor scaling action if d ≥ 3 and of the operator scaling
action if d = 2. When restricting to the torus T = STm1(K)× · · ·×STmd(K), we
refer to this action as array scaling action if d ≥ 3 and as matrix scaling action
if d = 2. Finally, if m = m1 = . . . = md we set πm,d := πm⊗···⊗m. ♦

For the last example we first need to introduce quivers and their representa-
tions. Detailed information on quiver representations can be found in [DW17].

Definition 1.3.6 ([DW17, Definition 1.1.1]). A quiver Q = (Q0, Q1, h, t) consists
of a finite set Q0 of vertices, a finite set Q1 of arrows, and two functions h, t : Q1 →
Q0. For a ∈ Q1, h(a) is the head of a and t(a) is the tail of a, i.e.,

t(a) h(a) .a

We stress that multiple arrows and multiple loops are allowed. N

Definition 1.3.7 (Quiver Representation). Let Q be a quiver with Q0 = [d]. A
representation of Q is an assignment of a vector space Kmi to each vertex i ∈ [d]
and a matrix Ya ∈ Kmh(a)×mt(a) to each arrow a ∈ Q1. The matrix Ya represents a
K-linear map Kmt(a) → Kmh(a) . All information on the vertices is encoded by the
dimension vector α = (m1, . . . ,md). The vector space

R(Q,α) :=
⊕
a∈Q1

Kmh(a)×mt(a)

is called the representation space of α-dimensional representations of Q. N

Example 1.3.8 (Action on Representations of a Quiver). Let Q be a quiver with
vertex set Q0 = [d] and fix a dimension vector α = (m1, . . . ,md). Set

GLα(K) := GLm1(K)×· · ·×GLmd(K) and SLα(K) := SLm1(K)×· · ·×SLmd(K).

GLα(K) acts algebraically via base change on the representation space R(Q,α):

g · (Ya)a∈Q1 :=
(
gh(a) Ya g

−1
t(a)

)
a∈Q1

,

where g ∈ GLα(K) and (Ya)a∈Q1 ∈ R(Q,α). We call this action the GL-action on
the quiver Q with dimension vector α.14 If we restrict the action to the subgroup
SLα(K) then we speak of the SL-action on the quiver Q with dimension vector α.

For illustration we consider two examples. First, let Q be the one loop quiver

1

14This may be a non-standard name.
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and α = (m). Then GLα(K) = GLm(K) and R(Q,α) = Km×m. As head and
tail of the arrow in Q are the same, we see that the GL-action on the one loop
quiver is the conjugation action. If % is the corresponding representation, then
%⊕n is the simultaneous conjugation of GLm(K) on n-many matrices. Note that
the latter is the GL action on the quiver with one vertex and n loops.

Second, let Q be the n-Kronecker quiver with two vertices and n arrows:

1 2...

and α = (m1,m2). Then GLα(K) = GLm1 ×GLm2(K) and R(Q,α) = (Km1×m2)n.
Since vertex 1 is the head and vertex 2 is the tail of all arrows, the GL-action on
Q is given by

g · Y :=
(
g1Y1g

−1
2 , . . . , g1Yng

−1
2

)
,

where g = (g1, g2) ∈ GLα(K) and Y = (Y1, . . . , Yn) ∈ (Km1×m2)n. One verifies
that pre-composition with the automorphism (g1, g2) 7→ (g1, g

−T
2 ) of GLm1(K) ×

GLm2(K) transforms the GL-action on the n-Kronecker quiver into the GL-left-
right action (Example 1.3.3), and vice versa. The same applies to the respective
SL-actions, i.e., when restricting to SLm1(K)× SLm2(K). ♦

Self-Adjoint and reductive groups

We connect the important concepts of self-adjoint groups and reductive groups
to each other. Remember the definitions of semisimple representations from the
beginning of this Section 1.3.

A linear algebraic group G is called linearly reductive, if all its rational rep-
resentations are semisimple. An important property of reductive groups in char-
acteristic zero is that their rational representations are semisimple (also called
completely reducible). In fact, in characteristic zero reductive and linearly reduc-
tive are equivalent notions.

Theorem 1.3.9 ([Mil17, Theorem 22.42 and Corollary 22.43]).
Let G be a linear algebraic group over K. Then G is reductive if and only if it
admits a faithful semisimple rational representation. Moreover, G is reductive if
and only if all finite-dimensional representations of G are semisimple.

Combining the latter theorem with results from [Mos55] links self-adjoint and
reductive groups.

Theorem 1.3.10 ([Mos55, Theorems 7.1 and 7.2]).
Let V be a finite dimensional K-vector space and let G ⊆ GL(V ) be an algebraic
subgroup over K. Then G is reductive if and only if G is self-adjoint with respect
to some inner product on V . Thus, if V = Km then G ⊆ GLm(K) is reductive if
and only if there exists some h ∈ GLm(K) such that hGh−1 is self-adjoint (with
respect to the standard inner product).

As a consequence of the preceding theorem, the reductive subgroups of GLm(K)
are, up to conjugation, the Zariski closed self-adjoint subgroups.
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Weights and Roots

We present necessary background on weights and roots. These concepts are only
needed in the complex case and mainly used in Part II. Thus, we restrict to K = C
and for an easier comparison we follow the conventions in [BFG+19, Section 2].
For further information we refer to [FH91; GW09; Hal15; Kna96; Pro07] and for
a treatment over the reals to [Bor06; OV90].

Thanks to Theorem 1.3.10 we may, for the sake of concreteness, restrict to
Zariski closed self-adjoint subgroups when working with reductive groups. Our
setting for studying weights and roots is as follows.

Setting 1.3.11. Let G ⊆ GLN(C) be a Zariski closed self-adjoint subgroup.
Then K := {g ∈ G | g†g = IN} is a maximal compact group of G, see Propo-
sition 1.2.14(a). Moreover, T := (G ∩ GTN(C))◦ is a maximal torus of G and
TK := T ∩ K is a maximal compact torus in K, Proposition 1.2.14(b). The
R-space iLie(TK) lies in iLie(GTN(C) ∩ UN) which can be identified with RN ,
compare Example 1.2.9 Item 6.

Often, we study the concrete case where G := SLm(C)d is block-diagonally
embedded in GLdm(C) (N = dm). In that case K = (SUm)d, T = STm(C)d and
TK = T ∩K, which are as well block-diagonally embedded into GLdm(C). Simi-
larly, their Lie algebras are block-diagonally embedded into Cdm×dm. Considering
Example 1.2.9 Item 7, we frequently use the identification

iLie(TK) ∼= (1⊥m)d ⊆ (Rm)d,

where 1⊥m is the orthogonal complement of 1m in Rm. N

Definition 1.3.12 (Weights and Weight Spaces). Consider the Setting 1.3.11.
Let π : G→ GL(V ) be a complex rational representation with corresponding Lie
algebra representation by Π: Lie(G)→ End(V ), compare Theorem 1.2.10.

We call ω ∈ iLie(TK) a weight of π (with respect to the maximal torus T ) if
there exists a non-zero vω ∈ V such that

∀X ∈ Lie(T ) : π
(
eX
)
vω = etr(Xω)vω

or, equivalently (see Theorem 1.2.10),

∀X ∈ Lie(T ) : Π (X) vω = tr(Xω)vω .

We say vω is a weight vector for weight ω. The weight space Vω contains all weight
vectors of ω and the zero vector. We denote by Ω(π) the set of weights of π. N

Remark 1.3.13. The set of possible weights forms a lattice which is isomorphic
to the character group X(T ); compare Proposition 2.1.3 and Theorem 3.1.16
from [GW09] with each other. Indeed, [GW09, Proposition 2.1.3] follows the
algebraic geometric point of view and defines weights via characters. The Lie
group/Lie algebra approach in Definition 1.3.12, which equals the approach in
[GW09, Theorem 3.1.16], identifies the characters as points in iLie(TK).
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For example, X(GTm(C)) = Zm ⊆ Rm ∼= iLie(GTm(C) ∩ Um). In the case
T = STm(C) each character in X(T ) = Zm/Z1m is identified via

X(TK)→ 1
⊥
m
∼= iLie(TK), (λ1, . . . , λm) 7→ (λ1, . . . , λm)− λ+

m
1m

with a rational point in iLie(TK); also compare Example 1.3.17 below. O

We have the following important decomposition of V .

Theorem 1.3.14 (Weight Space Decomposition, [GW09, Theorem 3.1.16]15).
Consider Setting 1.3.11 and let π : G→ GL(V ) be a rational representation. The
weight spaces Vω of V with respect to the torus T decompose V :

V =
⊕
ω∈Ω(π)

Vω . (1.4)

In particular, the set of weights Ω(π) is finite.

Remark 1.3.15. Let π : G → GL(V ) be a rational representation with weight
space decomposition as in (1.4). Then its n-fold direct sum π⊕n : G→ GL(V ⊕n)
has the weight space decomposition V ⊕n =

⊕
ω∈Ω(π) V

⊕n
ω . In particular, we see

that Ω(π) = Ω(π⊕n) O

Next, we give the set of weights for several rational representations.

Example 1.3.16 (General Action of GTd(C)). In the following we discuss all
rational representations of GTd(C) up to isomorphism. The notation is adjusted
to the one used in Chapter 7.

If π : GTd(C) → GL(V ) is a rational representation, then we can identify
V ∼= Cm such that the canonical unit vectors ej, j ∈ [m] are weight vec-
tors. Let (a1j, . . . , adj) ∈ Zd be the weight with weight vector ej. Then t =
diag(t1, . . . , td) ∈ GTd(C) acts on the coordinates v ∈ Cm via vj 7→ t

a1j
1 · · · t

adj
d vj.

That is, t acts on v by left-multiplication with the diagonal matrix
ta111 ta212 · · · t

ad1
d

ta121 ta222 · · · t
ad2
d

. . .
ta1m1 ta2m2 · · · tadmd

 . (1.5)

We can encode this action uniquely by the weight matrix A = (aij) ∈ Zd×m,
which contains the weights as columns. Of course, any such matrix A defines an
algebraic action via (1.5). Thus, rational representations of GTd(C) on Cm are
in one-to-one correspondence with their weight matrix A.

For us, a linearization via b ∈ Zm of the above action shifts all weights by the
vector −b.16 That is, t ∈ GTd(C) acts on v ∈ Cm via

vj 7→ t
a1j−b1
1 · · · tadj−bdd vj . (1.6)

15Via rational characters it is [GW09, Proposition 2.1.3]. Further references are [Mil17,
Theorem 12.12], [OV90, p. 141], [Spr98, Theorem 3.2.3].

16Linearizations are a concept from Geometric Invariant Theory [Dol03, Chapter 7]. In our
specific situation the general concept agrees with the definition of linearization presented here,
see [AKRS21b, Remark 3.3].
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We refer to this action as the action of GTd(C) given by matrix A with lineariza-
tion b. Of course, the action in (1.6) is again encoded by a weight matrix, namely
A − 1

T
m ⊗ b = A − (b, . . . , b) ∈ Zd×m. However, it is instructive to work with

linearizations in Chapter 7. There, the matrix A will encode a statistical model17
and b is a vector that depends on the observed data and the matrix A. ♦

Example 1.3.17 (Left Multiplication, [FR21, Example B.2]). Consider the ra-
tional representation π : SLm(C) → GLm(C), g 7→ g, which is the action of
G = SLm(C) on Cm by left multiplication. For i ∈ [m], we set

εi := ei −
1

m
1m ∈ 1⊥m ⊆ Rm (1.7)

where ei ∈ Rm is the ith canonical unit vector. Remember that we identify
1
⊥
m
∼= iLie(TK). For all X = diag(x1, . . . , xm) ∈ Lie(T ) and all i ∈ [m]

π (exp(X)) ei = exp(xi)ei
(∗)
= exp

(
tr(X diag(εi))

)
ei ,

where we used x1 + . . . + xm = 0 in (∗). Thus, εi ∈ 1
⊥
m
∼= iLie(TK) is a weight

of π with weight vector ei. Since Cm =
⊕

iCei, we deduce Ω(π) = {εi | i ∈ [m]}.
We stress that, although π (exp(X)) ei = exp

(
tr(X diag(ei))

)
ei holds for all

X ∈ Lie(T ), we have ei /∈ 1⊥m ∼= iLie(TK) and hence ei cannot be a weight. ♦

Example 1.3.18 (Tensor Scaling). Consider the tensor scaling action πm,d, i.e.,
the natural action ofG = SLm(C)d on V = (Cm)⊗d from Example 1.3.5. Using the
argument from Example 1.3.17 in each tensor factor, one verifies that (εi1 , . . . , εid)
is a weight of πm,d with weight vector ei1 ⊗ · · · ⊗ eid . Therefore, we deduce

Ω(πm,d) =
{

(εi1 , . . . , εid) | i1, . . . , id ∈ [m]
}
⊆ (Rm)d,

since the ei1 ⊗ · · · ⊗ eid span V . ♦

Example 1.3.19 (Actions on Quivers). Recall the SL-action on a quiver Q, i.e.,
the action of SLα(C) on R(Q,α) =

⊕
a∈Q1

Cmh(a)×mt(a) from Example 1.3.8. Since
R(Q,α) is the direct sum of the matrix spaces associated to each arrow a ∈ Q,
one can read off the weights for a general quiver by considering the two “building
blocks”. The latter refers to the two quivers

1 and 1 2.

Let π be the action of G = SLm(C)2 on the right quiver with dimension vector
α = (m1,m2), i.e., (g1, g2) ·Y = g1Y g

−1
2 where Y ∈ Km1×m2 . For i ∈ [m1] and j ∈

17namely, the log-linear modelM``
A defined by A
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[m2], denote by Ei,j ∈ Cm1×m2 the matrix with entry one at position (i, j) and all
other entries zero. Then for all i ∈ [m1], j ∈ [m2] and all X = diag(x, y) ∈ Lie(T )

exp(X) · Ei,j = exp(xi − yj)Ei,j
(∗)
= exp

(
〈x, εi〉 − 〈y, εj〉

)
Ei,j

= exp
(

tr(X diag(εi,−εj))
)
Ei,j,

where we used in (∗) that x+ = y+ = 0 (i.e., that X ∈ Lie(T )).18 Therefore,
(εi,−εj) is a weight with weight vector Ei,j and hence

Ω(π) = {(εi,−εj) | i ∈ [m1], j ∈ [m2]}.

Similar computations show that the SL-action on the one loop quiver, i.e., the
conjugation action of SLm(C) on Cm×m has the following weights. For i, j ∈ [m]
with i 6= j, (ei − ej) is a weight with weight vector Ei,j, and 0 is a weight with
weight space

⊕
i∈[m]CEi,i. ♦

Finally, we define roots and root spaces.

Definition 1.3.20 (Roots and Root Spaces). Let G ⊆ GLm(C) be Zariski closed
and self-adjoint. Set T := G ∩GTm(K) and consider the adjoint representations
Ad and ad from Example 1.3.1. The non-zero weights α ∈ Ω(Ad) are called roots
of G and the weight spaces Lie(G)α are called root spaces . Note that Y ∈ Lie(G)
satisfies ad(X)(Y ) = [X, Y ] = 0 for all X ∈ Lie(T ) if and only if Y ∈ Lie(T ).
Hence, Lie(T ) is the weight space of 0 ∈ Ω(Ad) and with Theorem 1.3.14 we
obtain

Lie(G) = Lie(T )⊕
⊕
α

Lie(G)α,

the root space decomposition of Lie(G). N

Example 1.3.21 ([FR21, Example B.3]). Let G = SLm(C) and for i, j ∈ [m]
denote by Ei,j ∈ Cm×m the matrix with entry one at position (i, j) and all other
entries zero. For i, j ∈ [m] with i 6= j and for all X = diag(x1, . . . , xm) ∈ Lie(T )
we compute

ad(X)(Ei,j) = [X,Ei,j] = (xi − xj)Ei,j = tr
(
X diag(ei − ej)

)
Ei,j.

Since ei − ej ∈ 1
⊥
m
∼= iLie(TK), we deduce ei − ej ∈ Ω(Ad) with weight vector

Ei,j. Therefore, the set of roots of G = SLm(C) is {ei − ej | i, j ∈ [m], i 6= j},
because Lie(G) = Lie(T )⊕

⊕
i 6=j CEi,j.

More generally, one can deduce that the roots of G = SLm(C)d are the

(ei − ej, 0m, . . . , 0m), (0m, ei − ej, 0m, . . . , 0m), . . . , (0m, . . . , 0m, ei − ej) ∈ (Rm)d

for i, j ∈ [m] with i 6= j. ♦

We need the following property of roots, which is proved similarly as [Hal15,
Lemma 6.5] and [Kna96, Proposition 5.4(c)].

18By abuse of notation, εi = ei −m−1
1 1m1 ∈ 1⊥m1

while εj = ej −m−1
2 1m2 ∈ 1⊥m2

.
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Proposition 1.3.22 ([FR21, Proposition B.4]). Let G ⊆ GLN(C) be a Zariski
closed self-adjoint subgroup and let α be a root of G with root space Lie(G)α.
Consider a rational representation π : G → GL(V ) and its induced differential
Π: Lie(G)→ End(V ). If Vω is the weight space of some weight ω ∈ Ω(π), then

Π
(

Lie(G)α
)
(Vω) ⊆ Vω+α,

where Vω+α := {0}, if ω + α /∈ Ω(π).

1.4 Stability Notions

We introduce the (topological) stability notions that play a central role in this
thesis. From the perspective of Geometric Invariant Theory (GIT), our definitions
in terms of the Euclidean topology may seem unusual. However, this is needed for
the Kempf Ness Theorem (Section 2.2) over R. We also comment on connections
to GIT and point out that in the complex reductive setting our notions agree
with the classical notions from GIT, see Remark 1.4.8. We refer to [Dol03; Hos15;
Kra84; Mum77; MFK94; New78; PV94] for further information on GIT.

Let G be a group19 and V a finite dimensional K-vector space with an inner
product. Given a representation π : G→ GL(V ), define the capacity of v ∈ V as

capG(v) := inf
g∈G
‖g · v‖2. (1.8)

Note that capG(v) = capG(g · v) holds for all g ∈ G.

Definition 1.4.1 (Toplogical Stability Notions). Let π : G→ GL(V ) be a repre-
sentation of a group G, where V is a finite-dimensional K-vector space equipped
with its Euclidean topology. For v ∈ V , denote its stabilizer by Gv and its orbit
by G · v. We define the following stability notions under the action of G.

(a) v is unstable, if 0 ∈ G · v. Equivalently, capG(v) = 0.

(b) v is semistable, if 0 /∈ G · v. Equivalently, capG(v) > 0.

(c) v is polystable, if v 6= 0 and G · v is closed.

(d) v is stable, if v is polystable and Gv is finite.

Note that polystable implies semistable. The set N of all unstable points is called
(topological) null cone. N

Usually, we consider the stability notions for a rational representation of an
algebraic group over K. In Part III on algebraic statistics we often restrict to the
image and work with stability notions under π(G).
Remark 1.4.2. We note that (a), (b) and (c) in Definition 1.4.1 only depend on
the image H := π(G), so these stability notions coincide for the action of G and
of H. However, the notion stable may change as Hv = Gv/ ker(π). Namely, if
ker(π) is infinite (and hence Gv ⊇ ker(π) is), it may be that Hv is finite. Still, if
ker(π) is finite, then Hv is finite if and only if Gv is finite. Hence, also the notion
of stable coincides in this case. O

19not necessarily endowed with further structure
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Example 1.4.3. Let G = GLm(K) act on V = Km×n via left multiplication.
Then any v ∈ V is unstable: for ε > 0 we see that (ε Im) · v = εv → 0 as ε→ 0.
Therefore, this action is in a certain sense “uninteresting” when studying stability
notions. This also applies to similar actions of (products of) GL, e.g., left-right
action from Example 1.3.3 or the tensor scaling action from 1.3.5. ♦

As a consequence of the preceding example, it is more natural to consider
actions of (products of) SL.

Example 1.4.4. Let G = SLm(K) act on V = Km×n via left multiplication. We
argue that Y ∈ Km×n is either unstable or stable, depending on its row rank only.

If Y does not have full row rank m, then by Gaussian elimination one can
create a matrix Y ′ ∈ G ·Y that has a zero row. To ease notation assume the first
row of Y ′ is zero. Then diag(ε−m+1, ε, . . . , ε) · Y ′ → 0 for ε→ 0 and therefore Y
is G-unstable. In particular, if m > n then all matrices are unstable.

Now, assume Y has full row rank m, so we must have m ≤ n and Y 6= 0. We
argue that Y is stable under G. If g ∈ GY , i.e., gY = Y , then g has m linearly
independent eigenvectors, which are columns of Y , for eigenvalue one. Hence, we
must have g = Im and this shows GY = {Im} is finite. To show that the orbit
G · Y is Euclidean closed consider first m = n. Then

G · Y = {X ∈ Km×m | det(X) = det(Y )},

where “⊇” is clear, and conversely given X with det(X) = det(Y ) just consider
g := XY −1 ∈ G. We see that G · Y is even Zariski closed. For the general case
m ≤ n, the assumption on Y means that Y has a non-vanishing maximal minor.
Without loss of generality assume it is given by the first m columns Y1, . . . , Ym.
Set Y(1..m) := (Y1, . . . , Ym) ∈ Km×m. One verifies that

G · Y =
{
X ∈ Km×n | det(X(1..m)) = det(Y(1..m)),

(X(1..m))(Y(1..m))
−1(Ym+1, . . . , Yn) = (Xm+1, . . . , Xn)

}
,

which is again Zariski closed. Altogether, Y is stable if it has full row rank. ♦

In algebraic statistics one is usually interested in the real setting. For this,
the next statement is very useful when working with reductive groups.

Proposition 1.4.5 ([DM21, Proposition 2.21]). Let G be a connected, complex
reductive R-group. Let π : G → GL(V ) be a rational representation of G defined
over R and let v ∈ VR. Then v is un-/semi-/poly-/stable under GR if and only if
v is un-/semi-/poly-/stable under G.

In the following, we comment on connections to Geometric Invariant Theory
(GIT). In particular, we justify our topological notions of stability by showing
that they agree with the “usual” stability notions from GIT, see Remark 1.4.8.
First, we need to recall the ring of invariants.

In the following π : G→ GL(V ) is always a rational representation of a com-
plex reductive group. The representation π induces a natural action of G on the
coordinate ring C[V ] of V via

(g · f)(v) := f(g−1 · v), where g ∈ G, f ∈ C[V ], v ∈ V.
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The ring of invariants is the set of all fixed points under the latter action:

C[V ]G :=
{
f ∈ C[V ] | ∀ g ∈ G : g · f = f

}
.

That is, C[V ]G contains exactly those regular functions on V that are constant
on the G-orbits in V . We start with Hilbert’s finiteness theorem [Hil90; Hil93].
Modern references are [DK15, Theorem 2.2.10] and [PV94, Theorem 3.5].

Theorem 1.4.6 (Hilbert). Let π : G→ GL(V ) be a rational representation of a
complex reductive group. Then C[V ]G is a finitely generated C-algebra.

The invariant-theoretic null cone is defined as

N inv :=
{
v ∈ V | ∀ f ∈ C[V ]G : f(v) = f(0)

}
.

In words, N inv contains all vectors that cannot be distinguished by invariants from
the zero vector. A different characterization is obtained with the next theorem.

Theorem 1.4.7. Let π : G → GL(V ) be a rational representation of a complex
reductive group. For v, w ∈ V it holds that

G · vZ ∩G · wZ
= ∅ ⇔ ∃ f ∈ C[V ]G : f(v) 6= f(w).

Moreover, any orbit closure contains a unique Zariski closed orbit.

Proof. Note that any f ∈ C[V ]G is constant on G-orbits and hence, by continuity,
on Zariski closures of G-orbits. Therefore, G · vZ ∩ G · wZ 6= ∅ implies that for
all f ∈ C[V ]G one has f(v) = f(w). The other direction follows from [Dol03,
Lemma 6.1], also see [Wal17, Theorem 3.12].

Let x ∈ V . Since invariants are constant on G · x = G · xZ, the first part
shows that there can be at most one Zariski closed orbit in G · x. Such an orbit
always exists by Proposition 1.1.11.

In the special case w = 0, the above theorem shows that v ∈ N inv if and only
if 0 ∈ G · vZ. A vector v lying in N inv is called unstable (in the GIT sense). More
generally, we have the following.
Remark 1.4.8 (Stability Notions in GIT). Let π : G→ GL(V ) be a rational rep-
resentation of a complex reductive group. In Geometric Invariant Theory (GIT),
when studying (affine) GIT quotients one usually considers the notions unstable,
semistable and stable. They have different equivalent characterizations (as G
is reductive), see the excellent Table 1.1 in [Mum77, p. 41]. One characteriza-
tion is via the ring of invariants C[V ]G, e.g., as for N inv. Another characteriza-
tion is topological and exactly as in Definition 1.4.1(a), (b) and (d), but using
the Zariski topology instead of the Euclidean; also compare [MFK94, Appendix,
p. 194]. Similarly, some modern literature (e.g., [Tho06]) defines polystable as in
Definition 1.4.1(c), again using the Zariski topology. Taking into account that
Euclidean and Zariski closure of a G-orbit coincide (Corollary 1.1.12), we see that
the classical stability notions from GIT agree with the ones in Definition 1.4.1.

We caution the reader to always check the definitions of stability in the liter-
ature. Over time the namings have changed: e.g., polystable is called “stable” in
the main text of [MFK94], while stable is called there “properly stable”. Moreover,
polystable is “Kempf-stable” in [Dol03] and “nice semistable” in [Nes84]. O
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The next example stresses that G being reductive is necessary for the equality
of invariant-theoretic and topological null cone.

Example 1.4.9. Let G = C be the one-dimensional additive group, which is
non-reductive (Example 1.1.24). Consider the rational representation

π : G→ GL2(C), g 7→
(

1 g
0 1

)
on V = C2, i.e., g acts on (x, y) ∈ C2 via g · (x, y) = (x + gy, y). Denote the
coordinate functions on V by X, Y ∈ C[V ]. Then C[Y ] ⊆ C[V ]G and one verifies
that equality holds. Therefore,

N inv =
{

(x, 0) | x ∈ C
}
.

Moreover, any orbit G · (x, y) is either a point (if y = 0) or a horizontal affine line
(if y 6= 0). Thus, all orbits are closed and hence the topological null cone is

N =
{

(x, y) ∈ C2 | 0 ∈ G · (x, y)
}

= {0}.

We see that N  N inv. ♦
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Chapter 2

Criteria for Stability Notions

The chapter presents several criteria for testing stability notions from Defini-
tion 1.4.1. These criteria are used throughout the thesis. We give corresponding
references in each section.

Organization. Section 2.1 contains the Hilbert-Mumford Criterion for tori, and
more generally, for reductive groups. In Section 2.2 we introduce moment maps
and moment polytopes, and state the Kempf-Ness Theorem, which is of particular
importance for this thesis. Afterwards, we deduce from King’s Criterion a char-
acterization for being (semi)stable under the left-right action, Section 2.3. While
all previous criteria require a reductive group, Popov’s Criterion in Section 2.4
can be used to test polystability under a solvable group.

2.1 Hilbert-Mumford Criterion

In the following we formulate the Hilbert-Mumford Criterion for tori and then
for general reductive groups. Afterwards, we focus on the torus case and provide
two detailed proofs. The latter is mainly based on [AKRS21b, Appendix A].

Let G be a complex algebraic group. An (algebraic) one-parameter subgroup
(short: 1-psg) of G is a morphism λ : C× → G of complex algebraic groups G.

Example 2.1.1. The algebraic one-parameter subgroups of the torus GTd(C)
are in bijection with Zd. The 1-psg given by (λ1, . . . , λd) ∈ Zd is

λ : C× → GTd(C), t 7→ diag
(
tλ1 , . . . , tλd

)
. (2.1)

By abuse of notation, we denote by λ both the 1-psg and the vector in Zd. ♦
Theorem 2.1.2 (Hilbert-Mumford for Tori, [Kra84, p. 173]).
Let π : T → GL(V ) be a rational representation of a complex torus T . Fix v ∈ V
and let w ∈ T · v\T · v. Then there exists an algebraic one-parameter subgroup
λ : C× → T such that

lim
t→0

λ(t) · v ∈ T · w.

In particular, if v 6= 0 is T -unstable, then choosing w = 0 gives limt→0 λ(t)·v = 0.

We give a proof of the special case of an unstable v and w = 0 below in
Theorem 2.1.7. Furthermore, Theorem 2.1.2 allows for a characterization of all
stability notions under a torus, see Theorem 2.1.9 below. For a general reductive
group we have the following statement, also see [Bir71, Theorem 4.2] (proof due
to R. Richardson).

37
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Theorem 2.1.3 (Hilbert-Mumford for Reductive Groups, [PV94, Theorem 6.9]).
Let π : G→ GL(V ) be a rational representation of a complex reductive group G.
Fix v ∈ V and let G ·w be the unique closed orbit1 in G · v. Then there exists an
algebraic one-parameter subgroup λ : C× → G of G such that

lim
t→0

λ(t) · v ∈ G · w.

In particular, if v 6= 0 is G-unstable, then w = 0 yields limt→0 λ(t) · v = 0.

Hence, the Hilbert-Mumford Criterion ensures that being unstable under the
action of a reductive group is always witnessed by a one-parameter subgroup.

Remark 2.1.4. Regarding Theorem 2.1.3 we point out the following.

(i) In contrast to case of tori (Theorem 2.1.2), for a reductive group G one
can in general not choose any G-orbit in G · v\G · v. Indeed, Example 1 in
[PV94, §6.8] shows that the assumption “G ·w is the unique closed orbit in
G · v” in Theorem 2.1.3 is necessary.

(ii) If the whole setting in Theorem 2.1.3 is defined over R and v ∈ VR, then
one can choose a one-parameter subgroup that is defined over R, by a result
of Birkes [Bir71, Theorem 5.2]. In fact, it was proven by Kempf that such
a rationality result of the Hilbert-Mumford Criterion holds for any perfect
field, [Kem78, Corollary 4.3].

(iii) The Hilbert-Mumford Criterion is an important proof ingredient for the
Kempf-Ness Theorem 2.2.13, both over the complex and over the real num-
bers. O

We will need the following result, that is often shown as an intermediate step
to prove Hilbert-Mumford.

Theorem 2.1.5 ([Wal17, Theorem 3.25]). Let G ⊆ GLN(C) be Zariski closed
and self-adjoint. Set K := G∩UN and T := (G∩GTN(C))◦. Consider a rational
representation π : G→ GL(V ) and fix v ∈ V . Let G ·w be the unique closed orbit
in G · v. Then there exists k ∈ K such that T · (k · v) ∩G · w 6= ∅. In particular,
if v is G-unstable, then w = 0 and hence 0 ∈ T · (k · v).

Proofs in the Torus Case

We provide a proof of the “classical” Hilbert-Mumford Theorem for a torus, and
for characterizations via the so-called weight polytope. The proofs are taken from
[AKRS21b, Appendix A] and are intended to be accessible to a wide audience.
They illustrate that the Hilbert-Mumford Criterion in the torus case is an instance
of linear programming duality and its many variants, compare [Sch86, Chapter 7].

Let T ⊆ GTN(C) be a complex sub-torus and set TK := T ∩ UN . Consider a
rational representation π : T → GL(V ) with set of weights Ω(π) ⊆ iLie(TK) ⊆ RN

1compare Theorem 1.4.7
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and weight space decomposition V =
⊕

ω Vω, see Theorem 1.3.14. Given v ∈ V ,
we write v =

∑
ω vω with vω ∈ Vω. Define the support of v with respect to π as

supp(v) := {ω ∈ Ω(π) | vω 6= 0}.

Furthermore, the weight polytope of v is

∆T (v) := conv
{
ω | ω ∈ supp(v)

}
⊆ iLie(TK) ⊆ RN . (2.2)

Using the weight polytope, the Hilbert-Mumford Criterion, Theorem 2.1.2, actu-
ally yields a characterization of all stability notions from Definition 1.4.1; compare
Theorem 2.1.9 below. Since any torus is isomorphic to GTd(C), we restrict for
concreteness to this situation.

Let T = GTd(C) act on V = Cm via the matrix A ∈ Zd×m, see Example 1.3.16.
The weights of this action are the columns Aj of the matrix A with corresponding
weight vector ej ∈ Cm. Therefore, the weight polytope (2.2) of v ∈ Cm is

∆A(v) := ∆T (v) = conv
{
Aj | vj 6= 0

}
.

It is convenient to remember the weight matrix A in the notation.
Now, we head towards proving the special case of Theorem 2.1.2. For this, let

λ be a one-parameter subgroup of T = GTd(C) as in (2.1). For v ∈ Cm, the jth
entry of λ(t) · v is

(λ(t) · v)j = t〈λ,Aj〉vj.

We consider limt→0 λ(t) · v. Its jth entry is zero for j /∈ supp(v). For j ∈ supp(v),
we have three possibilities

(
lim
t→0

λ(t) · v
)
j

=


0 if 〈λ,Aj〉 > 0

vj if 〈λ,Aj〉 = 0

∞ if 〈λ,Aj〉 < 0

(2.3)

To prove the Hilbert-Mumford Criterion, we need the following result from
the realm of linear programming duality, Farkas’ lemma, etc.

Theorem 2.1.6 (Gordan’s Transposition Theorem, [Sch86, §7.8 Equation (31)]).
Let F ∈ {Q,R} and B ∈ Fd×k. There is a vector x ∈ Fk with x ≥ 0, x 6= 0 and
Bx = 0 if and only if there is no vector y ∈ Fd with yTB > 0.

The classical statement of the Hilbert-Mumford Criterion for a torus action
is as follows, see e.g., [PV94, Proposition 5.3] and [Bir71, Lemma 3.4].

Theorem 2.1.7. Consider the action of GTd(C) on Cm via the matrix A ∈ Zd×m.
Let v ∈ Cm\{0} with zero in its orbit closure. Then there exists a one-parameter
subgroup λ of GTd(C) such that limt→0 λ(t) · v = 0.

Proof of Theorem 2.1.7. The proof follows [Sur00]. We have supp(v) 6= ∅ as
v 6= 0. After reordering the entries of v, we can assume without loss of generality
that supp(v) = [k] for some k ≤ m.
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We seek a one parameter subgroup λ : C× → GTd(C) such that limt→0 λ(t) ·v
is zero. From the form of a one parameter subgroup in (2.1) and the limiting
behaviour from (2.3), we see that this is equivalent to showing that

∃λ ∈ Zd : ∀ j ∈ [k] = supp(v) : 〈λ,Aj〉 > 0. (2.4)

Let B ∈ Zd×k be the submatrix consisting of the first k columns of A = (aij).
Then (2.4) reformulates as: there exists λ ∈ Zd with λTB > 0. Hence, by
Theorem 2.1.6 with F = Q, (2.4) is equivalent2 to the following statement:

if x = (x1, . . . , xk) ∈ Qk\{0} is such that ai1x1 + · · ·+ aikxk = 0
for all i ∈ [d], then at least two entries of x are of opposite sign. (2.5)

Thus, it remains to prove (2.5). Since 0 ∈ GTd(C) · v, there exists a sequence
t(n) = (t

(n)
1 , . . . , t

(n)
d ) ∈ GTd(C) with t(n) · v → 0 as n→∞. In coordinates,

∀ j ∈ [k] :
(
t
(n)
1

)a1j · · · (t(n)
d

)adj → 0 as n→∞. (2.6)

The hypothesis of (2.5) is that we have x ∈ Qk\{0} with x1ai1+· · ·+xkaik = 0 for
all i ∈ [d]. Without loss of generality, we can assume x1 is non-zero and therefore

∀ j ∈ [k] : − ai1 =
x2

x1

ai2 + · · ·+ xk
x1

aik,

which implies

d∏
i=1

(
t
(n)
i

)−ai1
=

(
d∏
i=1

(
t
(n)
i

)ai2)x2
x1

· · ·

(
d∏
i=1

(
t
(n)
i

)aik)xk
x1

. (2.7)

If xj/x1 ≥ 0 for all j ∈ {2, . . . , k}, then the right-hand side of (2.7) either equals
one (if all xj/x1 are zero) or tends to zero (if there exists some j with xj/x1 > 0).
But the left-hand side of (2.7) tends to infinity as n→∞, since it is the inverse
of (2.6) for j = 1. Hence xj/x1 must be strictly negative for some j, i.e., x1 and
xj have opposite signs.

We note that the generalization in Theorem 2.1.2 can be proven by similar
arguments from polyhedral geometry.

Now, let us turn towards Hilbert-Mumford in terms of the weight polytope.
We use the following consequence of Gordan’s Theorem 2.1.6.

Corollary 2.1.8. Let B ∈ Zd×k and let ∆B ⊆ Rd be the polytope spanned by the
columns of B. Then 0 /∈ ∆B if and only if there exists λ ∈ Zd with λTB > 0.

Proof. First, note that 0 ∈ ∆B is equivalent to the existence of x ∈ Rd\{0} such
that x ≥ 0 and Bx = 0. Thus, if there is λ ∈ Zd with λTB > 0, then 0 /∈ ∆B, by
Theorem 2.1.6 for F = R. On the other hand, if 0 /∈ ∆B then there is y ∈ Rd with
yTB > 0, again by Theorem 2.1.6. The existence of such a vector y ensures that
we can in fact choose y ∈ Qd. After multiplying with a common denominator,
we obtain some λ ∈ Zd with λTB > 0.

2Note that the existence of a y ∈ Qd with yTB > 0 is, after multiplying with a common
denominator, equivalent to the existence of some λ ∈ Zd with λTB > 0. In [Sur00] the
equivalence of (2.4) and (2.5) is stated in Lemma 1.1.
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Finally, we prove a full characterization of stability notions via the weight
polytope. Its formulation is based on [AKRS21b, Theorem 3.4] and the proof is
taken from [AKRS21b, Appendix A]. Given a polytope P ⊆ Rd, we denote its
interior by int(P ) and its relative interior by relint(P ).

Theorem 2.1.9 (Hilbert-Mumford Criterion via the Weight Polytope).
Consider the action of GTd(C) on Cm given by matrix A ∈ Zd×m. For v ∈ Cm,
we have

(a) v unstable ⇔ 0 /∈ ∆A(v)
(b) v semistable ⇔ 0 ∈ ∆A(v)
(c) v polystable ⇔ 0 ∈ relint(∆A(v))
(d) v stable ⇔ 0 ∈ int(∆A(v))

If GTd(C) acts on Cm given by matrix A ∈ Zd×m with linearization b ∈ Zd, then
the same statements (a) – (d) apply when replacing zero by b.

Remark 2.1.10. Of course, Theorem 2.1.9 also holds for the setting T ⊆ GLN(C)
with weight polytope ∆T (v) as in (2.2). In that situation, the interior in part (d)
has to be taken with respect to the R-vector space iLie(TK). O

We give a (hopefully) elementary and accessible proof of Theorem 2.1.9. Other
references are [Dol03, Theorem 9.2] and [Szé06, Theorem 1.5.1].

Proof of Theorem 2.1.9. Set T := GTd(C). We first prove part (a), and hence
(b) as well. If v = 0, then the polytope ∆A(v) is empty, hence 0 /∈ ∆A(v).
Assume v 6= 0. Then v is unstable if and only if there exists some λ ∈ Zd such
that 〈λ,Aj〉 > 0 for all j ∈ supp(v), by combining Theorem 2.1.7 with (2.3). By
Corollary 2.1.8, this is equivalent to 0 /∈ ∆A(v).

For (c), we first prove that if 0 is on the boundary of ∆A(v), then v is not
polystable. We construct a point in the orbit closure of v, with support strictly
smaller than that of v, and hence deduce that the orbit of v is not closed. Since
0 lies on the boundary of ∆A(v), it is contained in a minimal face F ( ∆A(v).
Since A has integer entries, there is a hyperplane

Hλ := {x ∈ Rd | 〈λ, x〉 = 0},

with λ ∈ Zd, such that F = Hλ ∩ ∆A(v). We choose the sign of λ so that it
has non-negative inner product with all of ∆A(v). This ensures that the limit
w := limt→0 λ(t) ·v exists. The limit w has supp(w) ( supp(v), since ∆A(w) ⊆ F .
Hence w ∈ T · v\T · v, and T · v is not closed.

For the converse direction of (c), we show that if v is semistable but not
polystable, then 0 /∈ relint(∆A(v)). Let w′ ∈ T · v\T ·v. There exists λ ∈ Zd such
that w := limt→0 λ(t) · v ∈ T ·w′, by Theorem 2.1.2. We have supp(w) ⊆ supp(v)
and, moreover, supp(w) ( supp(v) (otherwise w = v by (2.3), a contradiction).
Hence 〈λ,Aj〉 > 0 for all j ∈ supp(v)\ supp(w), while 〈λ,Aj〉 = 0 for all j ∈
supp(w), by (2.3). We obtain ∆A(v) * Hλ and ∆A(w) = Hλ∩∆A(v), i.e., ∆A(w)
is a proper face of ∆A(v). We have T · w = T · w′ ⊆ T · v and so w is semistable
as v is semistable. By (b), 0 ∈ ∆A(w) and hence 0 is on the boundary of ∆A(v).

To prove (d), we can assume v is polystable, i.e., 0 ∈ relint(∆A(v)). We want
to show that the dimension of the stabilizer Tv = {t ∈ T | t · v = v} is zero
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if and only if the interior of ∆A(v) equals its relative interior (i.e., if and only
if ∆A(v) is full-dimensional). Since 0 ∈ ∆A(v), the equality of the interior and
relative interior holds if and only if U := span{Aj | j ∈ supp(v)} equals Rd. If
Tv is positive dimensional, it must contain a one-parameter subgroup, i.e., some
λ ∈ Zd\{0} with λ(t) · v = v for all t ∈ C×. Then 〈λ,Aj〉 = 0 for all j ∈ supp(v),
so the orthogonal complement U⊥ ⊆ Rd contains a line, and U 6= Rd. Conversely,
if U 6= Rd then there exists non-zero λ ∈ U⊥, which can be chosen to have
integer entries, since A has integer entries. Then the image of the non-trivial one
parameter subgroup λ lies in Tv, which is therefore positive-dimensional.

Finally, if T acts on Cm by matrix A ∈ Zd×m with linearization b ∈ Zd, then
this is the same as the action given by matrix A′ ∈ Zd×m, where A′ has jth column
Aj − b; see (1.6) in Example 1.3.16. Therefore, we can deduce the last statement
by noting that ∆A′(v) = ∆A(v)− b.

2.2 Kempf-Ness Theorem

In this section we present an important analytical tool from invariant theory –
the Kempf-Ness Theorem. It plays a crucial role in this thesis and is heavily used
both in Part II and Part III. The presentation is based on [BFG+19] and [FR21],
sometimes also on [AKRS21a] and [AKRS21b, Appendix B].

First, we introduce the Setting 2.2.2 and define the moment map. Thereby,
we follow the conventions used in [BFG+19] for K = C, which enables a good
comparison with that paper in Part II. Afterwards, we compute the moment map
in several examples. We continue with Kempf-Ness, Theorem 2.2.13, and deduce
several statements from it. Finally, we introduce moment polytopes, which are
induced by the moment map and generalize the concept of weight polytopes.

The literature on Kempf-Ness, moment maps and polytopes, and related top-
ics is vast. The following list is certainly incomplete. We refer to [KN79; MFK94;
Wal17] for Kempf-Ness over C and to [RS90; Bil21; BL21; Wal17] for Kempf-Ness
over R. Moment polytopes are treated in [Bri87; GS84; Kir84a; OS00; Par20]
and related topics can be found e.g., in [HS07; HSS08b; Kir84b; MFK94; Mar01;
Nes84; Tho06] and the references therein.

The Moment Map

We need the following fact, see [Kna96, Proposition 4.6] or [Wal17, Theorem 2.9].3

Lemma 2.2.1. Let K be a compact matrix Lie group and let π : K → GL(V ) be
a continuous group morphism, where V is a finite dimensional K-vector space.
Then there exists an inner product 〈·, ·〉 on V such that K acts isometrically, i.e.,

∀ k ∈ K, v, w ∈ V : 〈π(k)v, π(k)w〉 = 〈v, w〉.

Equivalently, for all k ∈ K we have π(k)∗ = π(k)−1(= π(k†)), where π(k)∗

denotes the adjoint of π(k) with respect to 〈·, ·〉.
3The proof via the Haar measure also works for K = R.
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We are now ready to fix the required data for defining a moment map.

Setting 2.2.2. LetG ⊆ GLN(K) be a Zariski closed self-adjoint subgroup. Recall
the following from Proposition 1.2.14. The group K := {g ∈ G | g†g = IN}
is a maximal compact subgroup and setting p := Lie(G) ∩ SymN(K) we have
an orthogonal decomposition Lie(G) = Lie(K) ⊕ p of real vector spaces with
respect to the Euclidean inner product Re

(
tr(X†Y )

)
on CN×N . Furthermore,

p = iLie(K) if K = C.
Let π : G → GL(V ) be a rational representation defined over K with differ-

ential Π: Lie(G) → End(V ). Fix an inner product 〈·, ·〉 on V such that K acts
isometrically, and Π(X) is self-adjoint for all X ∈ p.4

A K-invariant inner product always exists by Lemma 2.2.1. If K = C then
the property on Π(X) automatically follows from the K-invariance of 〈·, ·〉, C-
linearity of Π and the fact that p = iLie(K). If K = R the existence of 〈·, ·〉 is
ensured by [BH62, Proposition 13.5], also compare [RS90, §2.3]. N

We illustrate the general setting in an Example.

Example 2.2.3. Let G := SLm(K)d be block-diagonally embedded in GLdm(K)
(N = dm). Depending on K ∈ {R,C}, we have K = SOm(R)d or K = (SUm)d,
again block-diagonally embedded in GLdm(K). Hence, their Lie algebras are block
diagonally embedded into Kdm×dm. Consider the tensor scaling action πm,d of G
on V = (Cm)⊗d from Example 1.3.5. For simplicity, let d = 3. One verifies that
for all (X, Y, Z) ∈ Lie(G)

Π(X, Y, Z) = X ⊗ Im⊗ Im + Im⊗Y ⊗ Im + Im⊗ Im⊗Z

using the Kronecker product of matrices. As desired, Π(X, Y, Z) ∈ Sym3m(K)
whenever (X, Y, Z) ∈ p. One verifies that K acts isometrically on V with respect
to the standard inner product. ♦

Given the above setting, remember from Definition 1.4.1 that a vector v is
called unstable if its capacity

capG(v) := inf
g∈G
‖π(g)v‖2 = inf

g∈G
‖g · v‖2

equals zero. It is semistable if the capacity is positive. Considering for v ∈ V \{0}
the so-called Kempf-Ness function

Fv : G→ R, v 7→ log ‖π(g)v‖ =
1

2
log
(
‖π(g)v‖2

)
(2.8)

we see that v is semistable if and only if Fv is bounded from below. In particular,
if the capacity is positive and attained by some ĝ ∈ G, then the differential of Fv
should vanish at ĝ. To make the concept of a differential/gradient more precise,
notice that Fv is right-G-equivariant, i.e.,

∀ g, h ∈ G : Fv(gh) = log ‖π(gh)v‖ = log ‖π(g)π(h)v‖ = Fπ(h)v(g) .

4In concrete representations this will usually be the standard inner product; except for
polynomial scaling in Section 4.6, where one has to take the Bombieri-Weyl inner product.
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Furthermore, as K acts isometrically on V the function Fv is left-K-invariant:

∀ k ∈ K, g ∈ G : Fv(kg) = log ‖π(kg)v‖ = log ‖π(g)v‖ = Fv(g) .

The G-equivariance ensures that it is enough to consider the differential of Fv at
the identity. The latter is the map

Lie(G) = Lie(K)⊕ p→ Lie(R) = R, X 7→ d

dt

∣∣∣∣
t=0

Fv
(
etX
)
,

compare Theorem 1.2.10. Now, theK-invariance of Fv implies that the differential
is zero on the direct summand Lie(K), so it suffices to consider the orthogonal
complement p. Altogether, we define the moment map both in the real and
complex case as the gradient of Fv.5

Definition 2.2.4 (Moment Map). Consider the Setting 2.2.2 and define the
moment map µG : V \{0} → p as follows. For v ∈ V \{0}, µG(v) is the unique
element of the real vector space p, which satisfies for all X ∈ p

tr
(
µG(v)X

)
=

d

dt

∣∣∣∣
t=0

Fv
(
etX
)

=
〈v,Π(X)v〉
〈v, v〉

.

Here we use that the inner product on p is Re
(

tr(µG(v)†X)
)

= tr(µG(v)X), that
Π(·) is R-linear and that 〈·, ·〉 is linear in the second component.6 N

Remark 2.2.5. In the literature µG(v) is often the differential of Fv rather than
the gradient. We follow the conventions in [BFG+19] for an easier comparison in
Part II. O

Restricting π to some Zariski closed self-adjoint subgroup H ⊆ G we can
similarly define the moment map µH : V \ {0} → q, where HK := H ∩ K and
q := Lie(HK) ∩ SymN(K) ⊆ p. The moment maps are related as follows.

Proposition 2.2.6 (based on [FR21, Proposition 4.2]). Let p : p → q be the
orthogonal projection with respect to the inner product Re(tr(X†Y )) = tr(XY )
on SymN(K). Then µH = p ◦ µG and ‖µH(v)‖F ≤ ‖µG(v)‖F for all v ∈ V \ {0}.

Proof. Since q ⊆ p the definition of the moment maps gives

tr(µH(v)X) =
〈v,Π(X)v〉
〈v, v〉

= tr(µG(v)X) = tr
(
p(µG(v))X

)
for all X ∈ q. Therefore, p(µG(v)) = µH(v) and ‖µH(v)‖F ≤ ‖µG(v)‖F follows
directly from this.

Another property of the moment map is its K-equivariance.
5This definition agrees with [BFG+19, Definition 3.2] and [FR21, Definition 4.1], where only

the complex case is considered.
6Remember that, by our convention, Hermitian inner products on C-vector spaces are always

linear in the second component and semi-linear in the first.
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Proposition 2.2.7. For all v ∈ V \{0} and all k ∈ K, µG(k · v) = kµG(v)k†.

Proof. Fix v ∈ V \{0} and k ∈ K. Note that kpk† = p. For all X ∈ p,

tr
(
µG(k · v)X

)
=

1

‖v‖2

〈
π(k)v,Π(X)π(k)v

〉 (∗)
=

1

‖v‖2

〈
v,Π(k†Xk)v

〉
= tr

(
µG(v)k†Xk

)
= tr

(
kµG(v)k†X

)
,

where we used in (∗) that π(k)∗ = π(k†) and then Theorem 1.2.10 Item 1. Since
kµG(v)k† ∈ p we must have µG(k · v) = kµG(v)k†.

Moment Map in Examples

We state the moment maps for several actions and give a detailed computation
in some cases. At a first read one may only skim through the results to quickly
progress to the Kempf-Ness Theorem.

Example 2.2.8 (Torus Actions). Consider a complex torus T ⊆ GTN(C) and set
TK := {t ∈ T | t†t = IN}. Let π : T → GL(V ) be a rational representation. Then
π admits a weight space decomposition V =

⊕
ω∈Ω(π) Vω, where Ω(π) ⊆ iLie(TK)

is the set of weights; compare Theorem 1.3.14. Equip V with an inner product
as in Setting 2.2.2. We show that the weight spaces are pairwise orthogonal. Let
ω, ε ∈ Ω(π) and choose vω ∈ Vω, vε ∈ Vε. As p = Lie(T ) ∩ SymN(C) = iLie(TK)
acts via self-adjoint operators and vω, vε are weight vectors (Definition 1.3.12),
we compute for all X ∈ p

tr(Xω)〈vω, vε〉 = 〈Π(X)vω, vε〉 = 〈vω,Π(X)vε〉 = tr(Xε)〈vω, vε〉.

If 〈vω, vε〉 6= 0, then tr(Xω) = tr(Xε) holds for all X ∈ p. Since ω, ε ∈ p we
necessarily have ω = ε by non-degeneracy of the trace inner product on p. By
contraposition, distinct weight spaces are orthogonal. Therefore, writing v =∑

ω vω ∈ V we have for all X ∈ p that

tr
(
µT (v)X

)
=

1

‖v‖2
〈v,Π(X)

∑
ω

vω〉 =
1

‖v‖2

〈∑
ε

vε,
∑
ω

tr(ωX)vω

〉
=

1

‖v‖2

∑
ω

tr(ωX)〈vω, vω〉 = tr

(∑
ω

‖vω‖2

‖v‖2
ωX

)
.

Hence, the moment map at v is given by

µT (v) =
∑

ω∈Ω(π)

‖vω‖2

‖v‖2
ω . (2.9)

Let us end by specifying this in two special cases. First, let T = GTd(C)
act on V = Cm via the matrix A ∈ Zd×m with linearization b ∈ Zd as in Ex-
ample 1.3.16. Then ej ∈ Cm is a weight vector for the weight Aj − b, where
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Aj denotes the jth column of A. For v = (v1, . . . , vm) ∈ Cm, define the vector
v[2] := (|v1|2, . . . , |vm|2). Then (2.9) becomes

µT (v) =
m∑
j=1

|vj|2

‖v‖2
(Aj − b) =

1

‖v‖2
Av[2] − b =

1

‖v‖2

(
Av[2] − ‖v‖2b

)
. (2.10)

Second, consider the matrix scaling action from Example 1.3.5: T = STm(C)2

acts on Cm×Cm ∼= Cm×m via πm,2. We know from Example 1.3.18 that (εi, εj) ∈
(1⊥m)2 is a weight with weight vector ei⊗ej ∼= Eij. Therefore, for v = (vij) ∈ Cm×m
Equation (2.9) becomes

µT (v) =
m∑

i,j=1

|vij|2

‖v‖2
(εi, εj) =

1

‖v‖2

m∑
i,j=1

|vij|2
(
(εi, 0) + (0, εj)

)
.

Setting Mv := (|vij|2)i,j ∈ Cm×m, we compute that

m∑
i,j=1

|vij|2(εi, 0) =
m∑
i=1

(Mv)i,+(ei −m−1
1m, 0) =

(
m∑
i=1

(Mv)i,+ei −
M+,+

m
1m, 0

)
.

Note that M+,+ = ‖v‖2 and that
∑

i(Mv)i,+ei is the vector of row sums of Mv,
which we denote by r(Mv). A similar computation to the above holds for c(Mv),
the vector of column sums (Mv)+,j. Altogether, we deduce that

µT (v) =
1

‖v‖2

(
r(Mv)−

‖v‖2

m
1m, c(Mv)−

‖v‖2

m
1m

)
. (2.11)

is the moment map at v for matrix scaling. ♦

Example 2.2.9 (Left Multiplication). Let π be the action of G = SLm(K) on
V = Km×n via left-multiplication. Then K acts isometrically on V with respect
to the Frobenius inner product. Moreover, for X ∈ Lie(G) and Y ∈ V we have
Π(X)Y = XY . In particular, Π(X) is self-adjoint for X ∈ p. We compute for all
X ∈ p

tr(µG(Y )X) =
1

‖Y ‖2
〈Y,Π(X)Y 〉 =

1

‖Y ‖2
tr(Y †XY )

(∗)
=

1

‖Y ‖2
tr(Y Y †X)− 1

m
tr(X) = tr

((
Y Y †

‖Y ‖2
− 1

m
Im

)
X

)
where we used tr(X) = 0 in (∗). Note that tr(Y Y †/‖Y ‖2) = 1 and hence it
cannot be µG(Y ) ∈ p. However, subtracting m−1 Im ensures we get a trace zero
matrix in Symm(K), i.e., a matrix in p = Lie(G) ∩ Symm(K). Therefore,

µG(Y ) =
Y Y †

‖Y ‖2
− 1

m
Im =

1

‖Y ‖2

(
Y Y † − ‖Y ‖

2

m
Im

)
(2.12)

gives the moment map. ♦
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Example 2.2.10 (Action on a Quiver). Consider the quiver Q

1 2 3
B1 B2 (2.13)

with dimension vector α = (m,m,m). The labels in (2.13) indicate how (B1, B2) ∈
V = R(Q,α) = (Km×m)2 is associated to the arrows. A group element g ∈ G =
SLα(K) = SLm(K)3 acts on V via

(g1, g2, g3) · (B1, B2) = (g2B1g
−1
1 , g2B2g

−1
3 ),

compare Example 1.3.8. Let π be the corresponding representation. Equipping
V with the standard inner product7 the group K acts isometrically on V . Recall
that we think of G, K and their Lie algebras as block diagonally embedded into
GL3m(K) respectively K3m×3m.8 For A ∈ Km×m set

Φ1(A) := −A†A+
‖A‖2

F

m
Im and Φ2(A) := AA† − ‖A‖

2
F

m
Im, (2.14)

which are in Symm(K) and have trace zero as tr(A†A) = tr(AA†) = ‖A‖2
F . There-

fore, Φ1(A),Φ2(A) ∈ q := Lie(SLm(K)) ∩ Symm(K). We will show that the
moment map is given by

µG(B) =
1

‖B‖2

(
Φ1(B1),Φ2(B1) + Φ2(B2),Φ1(B2)

)
. (2.15)

First, note that for general A ∈ Km×m and (X1, X2) ∈ Lie(SLm(K))2 we have

d

dt

∣∣∣∣
t=0

etX1Ae−tX2 =
(
X1e

tX1Ae−tX2 + etX1A(−X2)e−tX2
)∣∣
t=0

= X1A− AX2 .

Therefore, X = (X1, X2, X3) ∈ Lie(G) acts via

Π(X1, X2, X3)(B1, B2) = (X2B1 −B1X1, X2B2 −B2X3).

In particular, p acts via self-adjoint operators on V . By Definition 2.2.4, the
moment map µG(B) = ‖B‖−2

(
µ1(B), µ2(B), µ3(B)

)
∈ p ∼= q3, is determined by

3∑
i=1

tr
(
µi(B)Xi

)
=
〈
B,Π(X)B

〉
= tr

(
B†1(X2B1 −B1X1)

)
+ tr

(
B†2(X2B2 −B2X3)

) (2.16)

for all X = (X1, X2, X3) ∈ p. Thus, using X = (X1, 0, 0) ∈ p we obtain with
tr(X1) = 0 that

tr
(
µ1(B)X1

)
= tr

(
B†1(−B1X1)

) (∗)
= tr

(
−B†1B1X1

)
+
‖B1‖2

F

m
tr(X1)

= tr
(
Φ1(B1)X1

)
.

7That is, the two copies Km×m are orthogonal to each other and each copy is equipped with
the Frobenius inner product.

8For convenience, this is neglected in the notation; e.g., we write X = (X1, X2, X3) ∈
Lie(G) ∼= Lie(SLm(K))3 instead of X = diag(X1, X2, X3).
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Since Φ1(B1), µ1(B) ∈ q, we deduce µ1(B) = Φ1(B1) by non-degeneracy of the
trace inner product on q. Similarly, one shows µ3(B) = Φ1(B2). Finally, for
X = (0, X2, 0) ∈ p in Equation (2.16) we obtain

tr
(
µ1(B)X2

)
= tr

(
B†1X2B1

)
+ tr

(
B†2X2B2

)
= tr

(
B1B

†
1X2

)
+ tr

(
B2B

†
2X2

)
− ‖B1‖2

F + ‖B2‖2
F

m
tr(X2)

= tr
(
(Φ2(B1) + Φ2(B2))X2

)
.

We deduce µ2(B) = Φ2(B1) + Φ2(B2) and hence (2.15) holds.
Analogously, one can consider α = (m,m,m), the quiver Q′

1 2 3
C1 C2 (2.17)

and its associated action of G = SLm(K)3 on V = R(Q′, α) = (Km×m)2. In that
case, g ∈ G acts on C = (C1, C2) ∈ V via g · C = (g1C1g

−1
2 , g3C2g

−1
2 ) and

µG(C) =
1

‖C‖2

(
Φ2(C1),Φ1(C1) + Φ1(C2),Φ2(C2)

)
. (2.18)

is the moment map at C. ♦

Example 2.2.11 (Left-Right Action). Consider the left-right action of G =
SLm1(K)× SLm2(K) on V = (Km1×m2)n from Example 1.3.3. One computes that

µG(Y ) =
1

‖Y ‖2

(
n∑
i=1

YiY
†
i −
‖Y ‖2

m1

Im1 ,

( n∑
i=1

Y †i Yi

)T

− ‖Y ‖
2

m2

Im2

)
(2.19)

is the moment map at Y = (Y1, . . . , Yn) ∈ V . ♦

Example 2.2.12 (Tensor Scaling). Let πm,d be the natural action ofG = SLm(K)d

on V = (Km)⊗d. For a tensor v = (vi1,...,id) ∈ V , consider its flattenings
M1, . . . ,Md ∈ Km×md−1 into the d many directions, e.g., (M1)i1,(i2,...,id) = vi1,...,id .
One can compute that the moment map of πm,d is given by

µG(v) =
1

‖v‖2

(
M1M

†
1 −
‖v‖2

m
Im, . . . ,MdM

†
d −
‖v‖2

m
Im

)
. (2.20)

The matrices MlM
†
l , l ∈ [d] are called (one-body) quantum marginals of v. Usu-

ally, they are considered for K = C and they play an important role in quantum
information theory, see corresponding references in Section 3.1. Thus, Equa-
tion (2.20) links invariant theory via tensor scaling to this research area. ♦

The Theorem of Kempf-Ness

In the following we state the Kempf-Ness Theorem, which gives criteria to detect
semi- and polystability. It was first proven by Kempf and Ness in [KN79] over C.
The real case is due to Richardson and Slodowy [RS90], and their result allows
to deduce the complex case as well [RS90, Remark 4.5(d)].
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First, let us give some intuition for the statement. Remember that a vector
v is semistable if and only if the Kempf-Ness function Fv, see (2.8), is bounded
from below. An important property of Fv is its geodesic convexity on the manifold
P = {g†g | g ∈ G} of positive definite matrices in G [BFG+19, Proposition 3.13];
also compare Theorem 1.2.18 and Example 1.2.21. Similarly to convexity in the
Euclidean sense, geodesic convex functions on P achieve a global minimum at a
point if and only if their gradient vanishes at the point.9

There are several statements to which one refers as (part of) Kempf-Ness
Theorem. We collect them in Theorem 2.2.13, whose formulation is based on
[AKRS21a, Theorem 2.2].

Theorem 2.2.13 (Kempf-Ness Theorem). Consider the Setting 2.2.2. In partic-
ular, G ⊆ GLN(K) is Zariski closed and self-adjoint and K = {g ∈ G | g†g = IN}.
Moreover, π : G → GL(V ) is a rational representation over K with moment
map µ. For v ∈ V \{0}, we have:

(a) The vector v is of minimal norm in its orbit if and only if µ(v) = 0.

(b) Let v be of minimal norm in its orbit. If X ∈ p satisfies ‖eX · v‖ = ‖v‖,
then X · v = 0. If w ∈ G · v is such that ‖v‖ = ‖w‖, then w ∈ K · v.

(c) If the orbit G · v is closed, then there exists some w ∈ G · v with µ(w) = 0.

(d) If µ(v) = 0, then the orbit G · v is closed.

(e) The vector v is polystable if and only if there exists 0 6= w ∈ G · v with
µ(w) = 0.

(f) The vector v is semistable if and only if there exists 0 6= w ∈ G · v with
µ(w) = 0.

We can replace G by any Euclidean closed subgroup H ⊆ G with G◦ ⊆ H. In this
case, K is replaced by K ′ = {h ∈ H | h†h = IN}.

Proof. For K = R: note that our Setting 2.2.2 fits into the framework of [RS90].
In the latter work, G ⊆ GL(E) is stable under a Cartan involution, which just
means there is an inner product on E to which G is self-adjoint. For us, E = RN
is equipped with the standard inner product. Our p = Lie(G) ∩ SymN(R) is the
−1 eigenspace of θ : Lie(G)→ Lie(G), X 7→ −XT, and hence agrees with the p in
[RS90]. Moreover, the inner product from Setting 2.2.2 is K-invariant and π(X)
is self-adjoint for all X ∈ p as required by [RS90, §3].

Now, Part (a) is the equivalence of (i) and (iii) in [RS90, Theorem 4.3].
Item (b) is the last part of [RS90, Theorem 4.3] plus Lemma 4.2, which ensures
the statement on X ∈ p. [RS90, Theorem 4.4] yields parts (c), (d) and (e). Fi-
nally, part (f) follows from the fact that any orbit closure G · v contains a unique
closed orbit ([Lun75, Theoreme 2.7])10, which is not the zero orbit if and only if
v is semistable.

9For this, the facts from Theorem 1.2.18 that P is a totally geodesic manifold and has
non-positive curvature are crucial.

10also see [RS90, §9.3] or [BL21, Theorem 1.1(iii)]
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For K = C: by [RS90, Remark 4.5(d)] it follows from the real case. Still,
let us refer to the original paper [KN79]. Parts (a) respectively (b) are [KN79,
Theorem 0.1(a) respectively (b)], while [KN79, Theorem 0.2] yields items (c),
(d) and (e).11 Part (f) again follows from the fact that any orbit closure G · v
contains a unique closed orbit, Theorem 1.4.7. We note that the assumption in
[KN79] of G being connected is unnecessary.12

For H being a Euclidean closed subgroup with G◦ ⊆ H, note that H is self-
adjoint by Corollary 1.2.17. Thus, for K = R it follows from the general setting
of [RS90].13 If K = C note that H is Zariski closed, because it consists of several
connected components of G that are all Zariski closed as G◦ = G◦,Z over C
(compare Section 1.1). Hence, H is Zariski closed and self-adjoint which puts us
again in Setting 2.2.2.

Remark 2.2.14 (Further Literature). Parts (a)–(d) of Theorem 2.2.13 are the
formulations of [Wal17, Theorems 3.26 and 3.28]. However, one needs to be
careful: Wallach directly works with a Zariski closed self-adjoint subgroup of
GL(V ), but π(G) ⊆ GL(V ) may not be Zariski closed for K = R, compare
Example 1.1.8.

Still, if K = R we know from Proposition 1.2.5 that π(G) ⊆ GL(V ) is a
Euclidean closed Lie subgroup. Furthermore, in Setting 2.2.2 the inner product
〈·, ·〉 on V isK-invariant and for allX ∈ p the operator Π(X) is self-adjoint. Thus,
the polar decomposition on G induces a polar decomposition on π(G) and hence
π(G) is self-adjoint with respect to 〈·, ·〉. Altogether, π(G) ⊆ GL(V ) satisfies the
assumptions of [Bil21; BL21] and hence one can deduce Kempf-Ness over R also
from the formulations in [BL21, Theorem 1.1] respectively [Bil21, Theorem 1]. O

For Computational Invariant Theory an important consequence of Kempf-
Ness Theorem 2.2.13(f) is a “duality” between capacity and moment map:

capG(v) = 0 ⇔ 0 < inf
g∈G
‖µG(g · v)‖F = min

0 6=w∈G·v
‖µG(w)‖F . (2.21)

We revisit this in Part II, where we state a quantitive version in Theorem 3.2.5.
Next, let us illustrate Kempf-Ness in an example.

Example 2.2.15. Consider the left multiplication of G = SLm(K) on V = Km×n.
We know from Example 1.4.4 that Y ∈ V is either unstable or stable. The latter
case happens if and only if Y has full row rank. Now, assume that Y is stable.
To illustrate Kempf-Ness, Theorem 2.2.13, we determine an element of minimal
norm in G · Y and, as a sanity check, show that the moment map vanishes.

This problem is classical and we follow the explanations below Equation (2.2)
in [BGO+18]. First, note that the AM-GM inequality for the eigenvalues of a
positive semi-definite matrix Ψ ∈ Km×m translates to tr(Ψ) ≥ m(det(Ψ))1/m.
With this inequality we compute that for all g ∈ SLm(K)

‖g · Y ‖2 = tr
(
gY Y †g†

)
≥ m

(
det
(
gY Y †g†

))1/m
= m det

(
Y Y †

)1/m
.

11Note that “stable” in [KN79] means polystable in our sense.
12Indeed, [RS90] does not assume this.
13[RS90] also assumes H to be Zariski dense, but this is only needed in [RS90, §6] and not

in §3 and §4 which prove Kempf-Ness. Alternatively, one can deduce the statement on H from
[BL21], see Remark 2.2.14 below.
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SettingM := Y Y †, we have that capG(Y ) ≥ m det(M)1/m. In fact, equality holds
as follows. As Y has full row rank the matrix M is invertible, so M ∈ PDm(K).
Let M1/2 ∈ PDm(K) be the square root and set h := det(M)1/(2m)M−1/2 ∈ G.
We compute

(hY )(hY )† = det(M)1/mM−1/2Y Y †M−1/2

= det(M)1/mM−1/2MM−1/2 = det(M)1/m Im .
(2.22)

Therefore, ‖h · Y ‖2 = det(M)1/m tr(Im) = m det(M)1/m and we necessarily have

capG(Y ) = ‖h · Y ‖2 = m det(M)1/m.

We see that h ·Y is of minimal norm in G ·Y and hence Y is indeed polystable by
Kempf-Ness Theorem 2.2.13. Using (2.22) and the value for ‖h · Y ‖2 we obtain

(hY )(hY )† − ‖hY ‖
2

m
Im = det(M)1/m Im −

m det(M)1/m

m
Im = 0.

Hence, µG(h · Y ) = 0 by Equation (2.12) in Example 2.2.9. ♦

In the following we present three statements which fall into the realm of
Kempf-Ness.

Lemma 2.2.16. Consider the Setting 2.2.2. Let v ∈ V be of minimal norm in
its orbit. Then the stabilizer Gv is Zariski closed and self-adjoint.

Proof. The same proof as for [Wal17, Corollary 2.25] applies. First, recall from
Section 1.1 that Gv is Zariski closed as the action via π is algebraic. To show
self-adjointness, use the polar decomposition (Theorem 1.2.16) to write g =
k exp(X) ∈ Gv with k ∈ K and X ∈ p. Then X = X† yields g† = exp(X†)k−1 =
exp(X)k−1. Now, g ∈ Gv and K acting isometrically imply ‖v‖ = ‖g · v‖ =
‖ exp(X)v‖. Kempf-Ness Theorem 2.2.13(b) yields that Π(X)v = 0 and hence
π(exp(X))v = exp(Π(X))v = v. That is, exp(X) ∈ Gv and thus k = g exp(X)−1∈
Gv. Altogether, g† ∈ Gv.

Proposition 2.2.17. Let G ⊆ GLm(K) be Zariski closed and self-adjoint with
Euclidean identity component G◦. Set K := {g ∈ G | g†g = Im}.

(i) Then there exist finitely many k1 = Im, k2, . . . , kl ∈ K such that the kiG◦
are the Euclidean connected components of G.

(ii) If π : G → GL(V ) is a rational representation over K and K acts isomet-
rically on V with respect to some inner product, then the stability notions
for G and G◦ coincide.

Proof. For part (i), remember that G has only finitely many Euclidean connected
components, since it is algebraic. Moreover, exp(X) ∈ G◦ for all X ∈ Lie(G),
compare Proposition 1.2.8. Therefore, the polar decomposition (Theorem 1.2.16)
yields part (i).
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For part (ii), let v ∈ V . First, we have capG(v) = capG◦(v) using part (i) and
that K acts isometrically on V . Thus, v is G-unstable/semistable if and only is
v if G◦-unstable/semistable.

For part(iii), note that we can apply Kempf-Ness to G and G◦. Combining
Theorem 2.2.13(a) and (e) yields that v is polystable if and only if its capacity is
positive and attained. Since K acts isometrically, part (i) shows that capG(v) =
capG◦(v) is attained by some g ∈ G if and only if it is attained by some g′ ∈ G◦.
Hence, v is G-polystable if and only if it is G◦-polystable.

Finally, to ensure the same for “stable” it suffices to show that Gv is finite if
and only if (G◦)v is finite. If GY is finite, then (G◦)v is finite as (G◦)v ⊆ Gv. For
the converse, note that (Gv)

◦ ⊆ G◦ and hence (Gv)
◦ ⊆ (G◦)v. Moreover, Gv is

Zariski closed, so Gv/(Gv)
◦ is finite. Altogether, if (G◦)v is finite, then (Gv)

◦ is
finite and so is Gv.

We end with the fact that, in a complex setting compatible with the real
structures, the capacity of a real vector is independent of K ∈ {R,C}. This has
interesting algorithmic implications: when approximating the capacity of a real
vector it allows to use to use algorithms over C, e.g., as in [BFG+19].

Let GC ⊆ GLN(C) be Zariski closed, self-adjoint and defined over R. Then
GR := GC ∩GLN(R) is Zariski closed and self-adjoint. Consider a rational repre-
sentation π : GC → GL(VC) defined over R. Then πR : GR → GL(VR) is a rational
representation of GR. Equip VC with a Hermitian inner product 〈·, ·〉 on VC that
is invariant under K := G ∩ UN and compatible with VR, i.e., 〈v, w〉 ∈ R for all
v, w ∈ VR. This puts us into the setting of [RS90, §8].

Proposition 2.2.18 (based on [AKRS21a, Proposition 2.3]).
Assume the setting above. Let capGK

(v) be the capacity of v ∈ VK under GK and
let NK = {v ∈ VK | capGK

(v) = 0} be the null cone under the action of GK on VK.

(i) For v ∈ VR, we have the equality of capacities capGR
(v) = capGC

(v). In
particular, NR = NC ∩ VR.

(ii) NR = VR if and only if NC = VC.

Proof. For part (i), we have capGR
(v) ≥ capGC

(v) as GR ⊆ GC. Regarding the
converse inequality, the capacity capGK

(v) is attained at all elements of minimal
norm in the closed orbit contained in GK · v, by Kempf-Ness Theorem 2.2.13.
Hence, we can reduce to studying a closed orbit GR · v. If w is of minimal norm
in GR ·v, then it is of minimal norm in GC ·v by [RS90, Lemma 8.1]. Thus, GC ·w
is closed by Kempf-Ness and hence ‖w‖2 = capGC

(v). This shows (i).
For part (ii), NC = VC directly implies NR = VR. Conversely, VR is Zariski

dense in the irreducible complex variety VC, so NR = VR yields that NC contains
the Zariski dense subset NR. As NC is Zariski closed in VC (see Remark 1.4.8),
we must have NC = VC.

Moment Polytopes

We explain how moment maps induce so-called moment polytopes. They gener-
alize weight polytopes, which arise in the case of torus actions. These polytopes
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can be used to express the duality in (2.21). Moreover, the combinatorics of these
polytopes captures important complexity measures studied in Chapter 4. In the
latter we only work over C. Therefore, we restrict in the following to the complex
numbers, and only comment on real moment polytopes in Remark 2.2.21.

As a motivation of moment polytopes, we first describe how weight polytopes
arise as images of the moment map. For this, assume the Setting 2.2.2 for K = C,
G = T being a complex torus, and π : T → GL(V ) a rational representation with
set of weights Ω(π). Remember that V admits a weight space decomposition
V =

⊕
ω∈Ω(π) Vω and hence for v ∈ V we have v =

∑
ω vω for some vω ∈ Vω.

The weight polytope of v is ∆T (v) = conv{ω | vω 6= 0}. We know from (2.9) in
Example 2.2.8 that the moment map at v is

µT (v) =
∑

ω∈Ω(π)

‖vω‖2

‖v‖2
ω .

Moreover, we have seen in Example 2.2.8 that the weight spaces Vω are pairwise
orthogonal. Therefore, µT (v) is a convex combination of the weights and hence
µT (v) lies in the relative interior of ∆T (v), i.e., µT (v) ∈ relint(∆T (v)). In fact,
it was proven independently by Atiyah [Ati82, Theorem 2] and by Guillemin-
Sternberg [GS84, Theorem 4] that

relint ∆T (v) = µT (T · v) and so ∆T (v) = {µT (t · v) | t ∈ T} . (2.23)

The statements in [Ati82; GS84] rather apply to a projectivized setting. We
provide a brief translation for readers that are unfamiliar with these topics.
Remark 2.2.19 (based on [AKRS21b, Remark B.1]). Remember that the moment
map µT : V \{0} → p = iLie(TK) is invariant under non-zero scalars and therefore
factors through the projective space P(V ) via a map µ̄ : P(V ) → p. For a non-
zero v ∈ V , let [v] be the point in P(V ) that represents the line Cv. Then T
naturally acts on P(V ) and µ̄ is the moment map for this action. This action fits
the setting of [Ati82; GS84], because P(V ) is a compact Kähler manifold.

The results [Ati82, Theorem 2] and [GS84, Theorem 4] give

∆T (v) = µ̄
(
T · [v]

)
.

For (2.23), we need a statement for the orbit of v rather than the orbit closure of
[v]. The closure T · [v] is the disjoint union of finitely many T orbits. The orbits
relate to ∆T (v) as follows. For each open face F of ∆T (v) the set µ̄−1(F )∩T · [v]
is a single T -orbit in P(V ), [Ati82, Theorem 2]. In particular, for F = relint ∆T (v)
we obtain the orbit T · [v]. This yields (2.23), since µ̄(T · [v]) = µ(T · v). O

We point out how Equation (2.23) connects Hilbert-Mumford and Kempf-Ness
for torus actions. By Hilbert-Mumford Theorem 2.1.9(c) polystability is equiva-
lent to 0 ∈ relint ∆T (v), which translates with (2.23) to 0 ∈ µ(T ·v). The latter is
equivalent to the statement for polystability in Kempf-Ness, Theorem 2.2.13(e).

The fact that the image of the moment map yields a polytope remarkably
generalizes to the non-commutative setting, giving so-called moment polytopes.
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We need the latter only in the case G = SLm(C)d. Thus for concreteness, assume
the Setting 2.2.2 for G = SLm(C)d and corresponding moment map µG. Then for
fixed v ∈ V \ {0}, the set {µG(g · v) | g ∈ G} gives rise to a polytope as follows.

Let spec : Symm(C)→ Rm be the function sending a Hermitian matrix to its
eigenvalues in decreasing order. Recalling that iLie(K) ⊆ Symm(C)d is block-
diagonally embedded in Cdm×dm, we set

s : iLie(K)→ (Rm)d , diag(X1, . . . , Xd) 7→
(

spec(X1), . . . , spec(Xd)
)
.

Then for v ∈ V \ {0} the set

∆G(v) :=
{
s
(
µG(w)

)
| w ∈ G · v

}
(2.24)

is a convex polytope with rational vertices, see [Bri87], [GS84], [Kir84a] or [Nes84,
Appendix] by Mumford. We call ∆G(v) the moment polytope of v. Noting that
‖X‖F = ‖ spec(X)‖2 for any X ∈ Symm(C) we have ‖µG(v)‖F = ‖s(µG(v))‖2 for
all v ∈ V \{0}. Thus, we can formulate the duality from Equation (2.21) also as
follows:

capG(v) = 0 ⇔ dist
(
0,∆G(v)

)
> 0 ⇔ 0 /∈ ∆G(v). (2.25)

This will motivate the definition of two precision parameters in Definition 4.1.1.
Moreover, remember that Equation (2.25) for a torus G = T is Theorem 2.1.9(b),
which we proved via the Hilbert-Mumford Criterion (Theorem 2.1.2) and a ver-
sion of linear programming duality (Corollary 2.1.8). Furthermore, we can also
obtain it via Kempf-Ness Theorem 2.2.13(f) and Equation (2.23). Therefore, we
can regard the duality via Hilbert-Mumford Theorem 2.1.3 and Kempf-Ness The-
orem 2.2.13, and the dualities in Equations (2.21) and (2.25), as a generalization
of linear programming duality.

Let us briefly comment on how to define ∆G(v) for an arbitrary group G.

Remark 2.2.20 (General Definition of ∆G(v)). For a general group G as in Set-
ting 2.2.2, one can fix a fundamental Weyl chamber14 C(G) ⊆ iLie(TK) ⊆ RN , see
[Hal15, Definition 8.20] or [GW09, Definition 3.1.11]. For any X ∈ p = iLie(K),
this chamber C(G) intersects the Ad(K)-orbit {kXk† | k ∈ K} in a single point,
denoted s(X). This yields the moment polytope ∆G(v), defined exactly as in
(2.24). Note that for any X ∈ p there is some k ∈ K with s(X) = kXk†, and
so ‖s(X)‖ = ‖kXk†‖ = ‖X‖ by unitary invariance of the Frobenius norm. Thus,
Equation (2.25) holds in general.

If G = SLm(C), then the positive Weyl chamber is

C(G) = {diag(x) | x ∈ Rm, x+ = 0, x1 ≥ x2 ≥ · · · ≥ xm} ⊆ iLie(TK) ∼= 1
⊥
m .

For X ∈ iLie(SUm) we indeed have {kXk† | k ∈ SUm} ∩ C(G) = {spec(X)}. O
We end by giving references for moment polytopes in the real case.

14It is also called positive Weyl chamber. In our concrete setting G ⊆ GLN (C), a natural
choice is to take the fundamental Weyl chamber with respect to the group G∩BN (C) of upper
triangular matrices in G.
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Remark 2.2.21 (Moment Polytopes for K = R). Interestingly, one can as well
consider moment polytopes over the reals, which can then be described as sub-
polytopes of complex moment polytopes [OS00, Theorem 3.1]. Recent studies on
the facets of these real moment polytopes can be found in the preprint [Par20].
We refer to [OS00; Par20] and the literature therein for further information on
real moment polytopes. O

This remark naturally leads to Question 4.2.3.

2.3 King’s Criterion for Quivers

This section is based on [AKRS21a, Appendix A]. Its aim is to characterize
stable elements under the left-right action when K = C. For this, we can use
results from [Kin94] on stability of quiver representations. The main result is the
following.

Theorem 2.3.1. Consider the left-right action of H := SLm1(C) × SLm2(C) on
V := (Cm1×m2)n. Then Y = (Y1, . . . , Yn) ∈ V is stable under H if and only if

(i) the matrix (Y1| . . . |Yn) ∈ Cm1×nm2 has rank m1, and

(ii) for all subspaces V1 ⊆ Cm1, {0} ( V2 ( Cm2 that satisfy YiV2 ⊆ V1 for all
i ∈ [n], one has m2 dimV1 > m1 dimV2.

In the following, we explain how to deduce Theorem 2.3.1 from [Kin94]. For
concreteness, we directly restrict the general setting in [Kin94] to the quiver of
interest. Let Q be the n-Kronecker quiver with two vertices and n arrows:

1 2...

Recall from Example 1.3.8 that given a dimension vector α = (m1,m2) the groups
G := GLα(C) = GLm1(C) × GLm2(C) and H := SLα(C) = SLm1(C) × SLm2(C)
act on V = R(Q,α) ∼= (Cm1 × Cm2)n via

(g1, g2) · (Y1, . . . , Yn) = (g1Y1g
−1
2 , . . . , g1Yng

−1
2 ) .

After precomposition with the automorphism (g1, g2) 7→ (g1, g
−T
2 ) this is the

left-right action of G (respectively H) on V , compare Example 1.3.3. Thus,
Y ∈ V is semi/poly/stable under the H-Kronecker quiver action if and only
if it is semi/poly/stable under the H-left-right action. Hence, we can deduce
Theorem 2.3.1 by considering the Kronecker quiver action.

For this, we need another action of G = GLα(C) from [Kin94]. Let χθ be the
character of G given by θ := (m2,−m1), i.e., χθ(g1, g2) = det(g1)m2 det(g2)−m1 .
We consider the action of G on V × C, where G acts on V by the Kronecker
quiver action and on C by the character χ−1

θ , i.e.,

g · (X, z) := (g ·X,χ−1
θ (g)z), where χ−1

θ (g) = det(g1)−m2 det(g2)m1 . (2.26)
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Given Y ∈ V , we usually consider this action for Ŷ := (Y, 1). Note that 〈θ, α〉 = 0;
an important assumption in [Kin94] which ensures that the central subgroup

∆ :=
{

(t Im1 , t Im2) | t ∈ C×
}
⊆ G

is always contained in the stabilizer GŶ . In [Kin94, Definition 2.1] defines χθ-
(semi)stability for Y . For us, the following characterizations are important.15

Lemma 2.3.2 ([Kin94, Lemma 2.2]). Let Y ∈ V = (Cm1×m2)n = R(Q,α) and
set Ŷ := (Y, 1) ∈ V × C. Then

(a) Y is χθ-semistable if and only if (V × {0}) ∩G · Ŷ = ∅.

(b) Y is χθ-stable if and only if G · Ŷ is closed and GŶ /∆ is finite.16

To prove Theorem 2.3.1, we will later show that Y is χθ-stable if and only if
it is H-stable. The items (i) and (ii) from Theorem 2.3.1 stem from the following
stability notions.

Definition 2.3.3 ([Kin94, Definition 1.1]). Let Y ∈ V = (Cm1×m2)n = R(Q,α).
We write (Cm1 ,Cm2 ;Y ) if we want to stress that we view Y as a representation of
the Kronecker quiver (Definition 1.3.7). We say Y is θ-semistable if for all quiver-
subrepresentations of (Cm1 ,Cm2 ;Y ), i.e., all subspaces V1 ⊆ Cm1 , V2 ⊆ Cm2 with
YiV2 ⊆ V1 for all i, we have

〈θ, (dimV1, dimV2)〉 = m2 dimV1 −m1 dimV2 ≥ 0. (2.27)

Y is θ-stable if the inequality in (2.27) is strict for all non-zero proper subrepre-
sentations. Here, non-zero means V1 6= 0 or V2 6= 0, while proper means V1 ( Cm1

or V2 ( Cm2 . N

The concepts of θ-(semi)stability and χθ-(semi)stability agree.

Proposition 2.3.4 ([Kin94, Proposition 3.1]). Let Y ∈ V = (Cm1×m2)n. Then
Y is χθ-semistable (respectively χθ-stable) if and only if Y is θ-semistable (re-
spectively θ-stable).

To show that Y is χθ-stable if and only if it is H-stable, we provide a lemma.

Lemma 2.3.5 ([AKRS21a, Lemma A.1]). Let Y ∈ V = (Cm1×m2)n and z ∈ C×,
and set Ŷ := (Y, 1) ∈ V × C. Fix an (m1m2)-root function on C. Then

(a) (X, z) ∈ G · Ŷ ⇔ z
1

m1m2X ∈ H · Y

(b) (X, z) ∈ G · Ŷ ⇔ z
1

m1m2X ∈ H · Y

(c)
(
∃X ∈ V : (X, 0) ∈ G · Ŷ

)
⇔ 0 ∈ H · Y .

15The reader may regard these characterizations as a definition of χθ-(semi)stable.
16King works with the Zariski topology, while we apply this result with respect to the Eu-

clidean topology. Thus, we use Corollary 1.1.12 here.
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(d) The stabilizer HY is finite if and only if GŶ /∆ is finite.17

Proof. To prove (a), take g ∈ G with (X, z) = g · Ŷ . By Equation (2.26), we have
g · Y = X and det(g1)−m2 det(g2)m1 = z. The latter shows that there exist some
roots18 det(g1)

− 1
m1 , det(g2)

− 1
m2 ∈ C× such that

det(g1)
− 1
m1 det(g2)

1
m2 = z

1
m1m2 , i.e., h :=

(
det(g1)

− 1
m1 g1, det(g2)

− 1
m2 g2

)
∈ H

satisfies h · Y = z
1

m1m2X. Conversely, given the latter for some h = (h1, h2) ∈ H,
we define g :=

(
z
− 1
m1m2 h1, h2

)
and compute g · Ŷ = (X, z) using (2.26).

Part (b) follows from applying part (a) to a sequence in the respective orbit
that tends to a point in the orbit closure.

For part (c), note that if Y = 0 then (0, 0) ∈ G · Ŷ and 0 ∈ H · Y . It remains
to consider Y 6= 0. Take X ∈ V and let g(k) ∈ G be a sequence such that g(k) · Ŷ
tends to (X, 0) as k → ∞. Since χ−1

θ (g(k)) 6= 0 for all k, we apply (a) to obtain
Yk :=

[
χ−1
θ (g(k))

] 1
m1m2 g(k) ·Y ∈ H ·Y for all k. With g(k) · Ŷ → (X, 0) for k →∞

we conclude that the sequence Yk tends to 0 ∈ V . On the other hand, assume
there exist Yk ∈ H · Y with Yk → 0 as k →∞. Since Y 6= 0, we have Yk 6= 0 and

hence ck := ‖Yk‖
m1m2

2 6= 0 for all k. Thus, setting Xk := c
− 1
m1m2

k Yk and applying

part (a) to Yk = c
1

m1m2
k Xk gives (Xk, ck) ∈ G · Ŷ . The latter sequence tends to

(0, 0) ∈ V × C, noting that ‖Xk‖ = ‖Yk‖
1
2 by the choice of ck.

For part (d), first note that any h = (h1, h2) ∈ HY stabilizes Ŷ under the
action (2.26), because h1 and h2 have determinant one. Therefore, we have a
group morphism

ϕ : HY → GŶ /∆, (h1, h2) 7→ (h1, h2) .

Its kernel is HY ∩ ∆ = {(t Im1 , t Im2) | t ∈ C×, tm1 = tm2 = 1}, which is finite.
Moreover, ϕ is surjective by the following. If g = (g1, g2) ∈ GŶ then χ−1

θ (g) ·1 = 1
translates to det(g2)m1 = det(g1)m2 =: λ. Take an (m1m2)-root to obtain

t := λ
− 1
m1m2 = det(g1)

− 1
m1 = det(g2)

− 1
m2 .

Then h := (tg1, tg2) ∈ H, but h also stabilizes Y as g ∈ GŶ , so h ∈ HY . By
construction, ϕ(h) = g ∈ GŶ /∆, hence ϕ is surjective.

Altogether, HY / ker(ϕ) ∼= GŶ /∆. Since ker(ϕ) is finite, we deduce that HY

is finite if and only if GŶ /∆ is finite.

With the help of Lemma 2.3.5 we finally prove Theorem 2.3.1.

17This part is not included in [AKRS21a, Lemma A.1], but appeared later in [AKRS21a,
Appendix A]. We note that [AKRS21a] correctly states part (d), but the map GŶ → HY given
in [AKRS21a] is in general not a group morphism, and in general we do not have GŶ /∆ ∼= HY .
We adjusted the argument using a morphism ϕ : HY → GŶ that shows HY / ker(ϕ) ∼= GŶ /∆.

18Note that in general not all choices of roots will work, but there always exists a certain
choice with the desired properties.
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Proof of Theorem 2.3.1. By Proposition 2.3.4, the matrix tuple Y = (Y1, . . . , Yn)
is χθ-stable if and only if it is θ-stable. First, we show that the former is equivalent
to beingH-stable under the Kronecker quiver action. Then we rephrase θ-stability
as the (shrunk subspace) conditions (i) and (ii).

Let GŶ denote the G-stabilizer of Ŷ = (Y, 1) under the action (2.26). By
Lemma 2.3.2, Y is χθ-stable if and only if the orbit G · Ŷ is closed and the
group GŶ /∆ is finite. The group GŶ /∆ is finite if and only if HY is finite, by
Lemma 2.3.5(d). For Y = 0, we have HY = H, which is not finite.

Thus, it remains to show for Y 6= 0 that G · Ŷ is closed if and only if H · Y
is closed. If G · Ŷ is closed and X ∈ H · Y , then (X, 1) ∈ G · Ŷ = G · Ŷ
using Lemma 2.3.5(b), and hence X ∈ H · Y by Lemma 2.3.5(a). Conversely,
if H · Y is closed with Y 6= 0 then 0 /∈ H · Y . Thus, Lemma 2.3.5(c) yields
G · Ŷ ∩

(
V × {0}

)
= ∅. Hence, any (X, z) ∈ G · Ŷ must satisfy z ∈ C×, so

z
1

m1m2 ∈ H · Y = H · Y by Lemma 2.3.5(b). We conclude (X, z) ∈ G · Ŷ using
Lemma 2.3.5(a).

For Y being θ-stable, recall from Definition 2.3.3 that for all non-zero proper
quiver-subrepresentations of (Cm1 ,Cm2 ;Y ) the inequality (2.27) has to be strict:

〈θ, (dimV1, dimV2)〉 = m2 dimV1 −m1 dimV2 > 0.

Here, non-zero means V1 6= 0 or V2 6= 0, while proper means V1 ( Cm1 or
V2 ( Cm2 . Since V1 6= 0 and V2 = 0 gives strict inequality in (2.27), it is enough
to consider V2 6= 0. On the other hand, strict inequality in (2.27) holds for all
proper subrepresentations satisfying V1 ( Cm1 and V2 = Cm2 if and only if there is
no proper subrepresentation of this form, i.e., if and only if rank(Y1, . . . , Yn) = m1.
Hence, by requiring the latter condition we can restrict to the case V2 ( Cm2 .
Altogether, we rephrased the θ-stability of Y as (i) and (ii) in the statement.

Similarly, we obtain a characterization for being semistable under the left-right
action of H. The statement was proven differently in [BD06, Proposition 2.1],
and we revisit it in Theorem 9.4.6.

Proposition 2.3.6. Consider the left-right action of H := SLm1(C) × SLm2(C)
on V := (Cm1×m2)n. Then Y = (Y1, . . . , Yn) ∈ V is semistable under H if and
only if for all subspaces V1 ⊆ Cm1, V2 ⊆ Cm2 that satisfy YiV2 ⊆ V1 for all i ∈ [n],
one has m2 dimV1 ≥ m1 dimV2.

Proof. This is based on [AKRS21a, Remark A.2]. Remember Y is H-semistable
under the left-right action if and only if it is H-semistable under the Kronecker
quiver action. By Lemma 2.3.5(c), the latter is equivalent to(

V × {0}
)
∩G · Ŷ 6= ∅,

which in turn is equivalent to Y being χθ-semistable, see Lemma 2.3.2. By Propo-
sition 2.3.4, χθ-semistability is equivalent to θ-semistability, and that translates
via Definition 2.3.3 to the desired conditions.
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2.4 Popov’s Criterion for solvable Groups

In this subsection we present Popov’s Criterion for Zariski closed orbits under a
connected solvable group. First, we briefly state the criterion in its general form.
Afterwards, we specialize it to the very concrete setting in which we will apply
it later. Since the criterion requires an algebraically closed field, we end with
a lemma that allows to deduce polystability over R, given the complex orbit is
closed, and the rational representation is defined over R.

Let G be a connected solvable group over C. Then G is the semi-direct
product of its unipotent radical U and a maximal torus T , see Theorem 1.1.25.
By Proposition 1.1.20, X(U) = 0 and hence the character group X(G) of G can
be identified with X(T ) via restriction. We use this identification to view X(T )
as a subset of the coordinate ring C[G]. Assume G acts algebraically on an affine
variety Z. For z ∈ Z, consider the orbit map νG·z : G → Z, g 7→ g · z and
its pullback map ν∗G·z : C[Z] → C[G]. Then Rz := ν∗G·z(C[Z]) is a subalgebra
of C[G]. Therefore, XG·z := {χ ∈ X(T ) | χ ∈ Rz} is a semigroup, where we
identified X(T ) ⊆ C[G].
Theorem 2.4.1 (Popov’s Criterion, [Pop89, Theorem 4]).
Assume G and Z are as above, and let z ∈ Z. The orbit G · z is Zariski closed in
Z if and only if the semigroup XG·z is a group.
Remark 2.4.2. The Criterion contains the following special cases.
(i) If G = U is unipotent, then X(G) is trivial, compare Proposition 1.1.20.

Hence, XG·z is the trivial group for any z ∈ Z and therefore all orbits G · z
are Zariski closed, compare [Pop89, Corollary 3]. Thus, Popov’s Criterion
specializes for unipotent groups to the Kostant-Rosenlicht Theorem, see
[Ros61, Theorem 2].

(ii) If G = T is a torus, then Popov’s Criterion specializes to [Pop89, Corol-
lary 4]. If Z = V is a rational representation of G = T , then this gives a
reformulation of Theorem 2.1.9(c), the Hilbert Mumford Criterion via the
Newton polytope. Further details can be found in [Pop89, p. 386]. O

Now, we specialize to the setting in which we will apply Popov’s Criterion. The
following is similar to [Pop89, Section 9]. Assume G ⊆ GLm(C) is a connected
group of upper triangular matrices such that the group T of diagonal matrices in
G is a maximal torus, and the group U of unipotent upper triangular matrices in
G is the unipotent radical. Let G act on (Cm)n ∼= Cm×n by left multiplication.

The following notation is unusual from the perspective of algebraic geometry.19
We adjusted to the notation of Sections 9.5 and 10.7 for an easy comparison.
Denote the coordinate functions on G by xi,j ∈ C[G], i, j ∈ [m], and those of
Cm×n by fi,l ∈ C[Cm×n], i ∈ [m], l ∈ [n]. For matrix Y ∈ Cm×n, the pullback of
the orbit map νG·Y is given by

ν∗G·Y (fi,l) =
m∑
j=1

xi,jYj,l

19Usually, small letters denote constants and capital letters denote coordinate functions.
Here, it is the other way around.
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and therefore

RY = ν∗G·Y
(
C[Cm×n]

)
= C

[ m∑
j=1

Yj,lxi,j | i ∈ [m], l ∈ [n]
]
⊆ C[G]. (2.28)

Since T ⊆ GTm(C), we have a surjection ϕ : X(GTm(C)) ∼= Zm � X(T ) of
abelian groups, see Proposition 1.1.17. Therefore, X(T ) ∼= Zm/ ker(ϕ) and we
may write

XG·Y =
{

(d1, . . . , dm) ∈ X(T ) | xd111 · · ·xdmmm ∈ RY

}
using this identification.

We finish the section with an argument how to deduce polystability over the
reals if the representation is defined over R. As mentioned in the proofs of [Bir71,
Corollary 5.3] and [DM21, Proposition 2.21] the next statement follows from
[BH62, Proposition 2.3]. We stress that the group does not have to be reductive.

Lemma 2.4.3. Let G be a connected complex algebraic group and π : G→ GL(V )
be a rational representation, both defined over R. Let v ∈ VR and suppose that
G · v is Euclidean closed in V . Then GR · v is Euclidean closed in VR.

Proof. Since G is a connected complex algebraic group we can apply [BH62,
Proposition 2.3] (Proposition 1.1.14). Hence, we have that (G · v) ∩ VR is20 a
finite union of Euclidean closed (GR)◦-orbits, where (GR)◦ denotes the Euclidean
identity component. One of these closed orbits must be (GR)◦ · v. As GR is a
real algebraic variety it has finitely many Euclidean-connected components by
Theorem 1.1.6. Choose representatives g1, . . . , gk of GR/(GR)◦. Since GR is a Lie
group, the multiplication with gi is a homeomorphism and we conclude that

GR · v =
k⋃
i=1

gi
(
(GR)◦ · v

)
is Euclidean closed as a finite union of Euclidean closed sets.

20In general, (G · v) ∩ VR and GR · v do not have to be equal (see Remark 1.1.13), but the
latter is contained in the former
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Chapter 3

Computational Invariant Theory

“Invariant theory has already been pronounced dead several times,
and like the phoenix it has been again and again rising from its ashes.”

Dieudonné and Carrell in [DC70, page 1]

This chapter serves as an introduction to computational invariant theory, and
its manifold algorithmic methods and applications. Thereby, we embed and lo-
cate the contributions of this thesis in the research area. We stress that an
exhaustive discussion of computational invariant theory is not provided and cer-
tainly would go beyond this thesis. Instead, we focus and illustrate those aspects
especially needed in later chapters. In particular, we provide the necessary back-
ground and motivation for Chapters 4 and 5, which present hardness results for
geodesic convex methods in invariant theory. Moreover, the presented compu-
tational problems and scaling algorithms connect to the algorithmic aspects of
maximum likelihood estimation, see Part III on algebraic statistics.

Organization and Assumptions. In Section 3.1 we outline historical devel-
opments, state the computational problems studied in this thesis and some of
their applications. Afterwards, we discuss scaling algorithms and comment on
their complexity to solve these problems in Section 3.2.

We note that the whole chapter uses the assumptions stated below in Set-
ting 3.0.1, which is Setting 2.2.2 over C and we additionally fix a maximal torus.

Setting 3.0.1 (Assumptions for Part II). We work over C. Let G ⊆ GLN(C)
be a Zariski closed and self-adjoint subgroup,1 set K := G ∩ UN and p :=
iLie(K) = Lie(G)∩SymN(C). Moreover, fix a maximal torus T := (G∩GTN(C))◦

in G and a maximal compact torus TK := T ∩ K of K, compare Proposi-
tion 1.2.14. Consider a rational representation π : G→ GL(V ) and its differential
Π: Lie(G)→ End(V ). Equip V with a K-invariant inner product. Finally, let

µG : V \{0} → iLie(K) and µT : V \{0} → iLie(TK)

denote the moment maps for the G-action, respectively T -action, with respect to
this inner product. For a concrete instance see Example 2.2.3. N

1Remember from Theorem 1.3.10 that such groups are reductive, and conversely any reduc-
tive group is isomorphic to such a group.
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3.1 Computational Problems and Applications

Based on [DC70; Stu08; DK15], we first give a historical overview on some aspects
of computational invariant theory. Thereby, we introduce the main computational
problems of interest for this thesis. Afterwards we present several applications and
cite related literature, that may be consulted for further details. We end with an
extended example on matrix scaling, and short comments on its generalizations,
to illustrate how the computational problems translate in these cases.

History of Computational Problems

Since its origins in the 19th century invariant theory is inseparably linked to com-
putation. In fact, classical invariant theory from that time was mainly motivated
by the following fundamental problems, compare [KP96, Section 1.5] and [Stu08,
Section 1.3]. Given a representation π : G→ GL(V ):

1. Find a finite set f1, . . . , fk of generators of the ring of invariants C[V ]G.

2. Determine the algebraic relations, i.e., the syzygies, among f1, . . . , fk.2

Solutions to these problems for concrete actions are usually called the First and
Second Fundamental Theorem respectively [KP96]. Many famous mathemati-
cians such as Cayley, Clebsch, Cremona, Gordan and Sylvester contributed to
invariant theory in its classical period. The latter culminated in Hilbert’s break-
throughs [Hil90; Hil93], in which he proved that C[V ]G is finitely generated3 (The-
orem 1.4.6) and provided a finite algorithm that computes a system of generators.
It is noteworthy, that [Hil90; Hil93] made further outstanding contributions to
modern algebra: they contain Hilbert’s Nullstellensatz, Hilbert’s basis theorem
and Hilbert’s syzygy theorem. However, the computational methods available
were, especially with the lack of modern computers, extremely cumbersome and,
if at all, only possible to carry out by hand in tiniest examples.

With some of its main problems being solved and the given computational
cost of available algorithms, research in invariant theory (almost) fell asleep for
decades. A first revival was initiated by the developments on representations
of semisimple groups which realized classical invariant theory as a special case,
compare [Wey39]. Latest with Mumford’s invention of Geometric Invariant The-
ory (GIT) in 1965 invariant theory was again at the forefront of mathematics
[MFK94]. Mumford realized that ideas from Hilbert’s paper [Hil93] combined
with modern scheme theory enabled him to construct moduli spaces via so-called
GIT quotients. Again, this relates to an interesting computational question.
Namely, whether two vectors v, w ∈ V are identified in the affine GIT quotient
gives the following decision problem.

Computational Problem 3.1.1 (Orbit Closure Intersection (OCI)).
Given π : G→ GL(V ) and v, w ∈ V , decide whether G · vZ ∩G · wZ 6= ∅.

2In [Stu08] the following interesting problem is added: give an algorithm that writes any
invariant f ∈ C[V ]G as a polynomial in the generators f1, . . . , fk.

3where V is a finite dimensional representation of a reductive group G
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We note that [Mul17] conjectures that OCI is computable in polynomial time
for any rational representation of a reductive group G. An important special case
of OCI arises when w = 0. This translates to deciding whether v is unstable.

Computational Problem 3.1.2 (Null Cone Membership (NCM)).
Given π : G→ GL(V ) and v ∈ V , decide whether 0 ∈ G · vZ

= G · v.

In parallel to Mumford’s work, Buchberger’s algorithm4 [Buc70; Buc06] to
compute Gröbner bases gave birth to computational commutative algebra as a
research field. Soon, Gröbner basis methods fostered many new results in compu-
tational invariant theory; the reader is referred to the excellent text books [Stu08;
DK15] and the references therein. We remark that Sturmfels’ book [Stu08], which
marries the ideas of classical invariant theory with Gröbner basis methods, may
serve as an introduction to the topic. It is complemented by the monograph
[DK15], which treats many modern concepts such as Derksen’s algorithm, sepa-
rating invariants and degree bounds for generating invariants.

We point out that modern methods solve the OCI problem for general reduc-
tive groups as follows. One computes a system f1, . . . , fk of generators for C[V ]G

using Derksen’s algorithm [Der99] and evaluates them at v and w. This decides
OCI, as invariants separate orbit closures by Theorem 1.4.7. However, this ap-
proach is in general not computationally efficient or often even infeasible. First,
Derksen’s algorithm crucially involves the computation of a Gröbner basis, which
is usually very costly and the basis may be huge. Second, generating invariants
can have exponential degree [DM20b], and third, it may be difficult to evaluate
them (exactly). Furthermore, an approach via so-called succinct encodings of
generating invariants [Mul17] was disproven recently in [GIM+20]. Hence, for
general reductive groups it remains open whether the OCI Problem 3.1.1 can be
decided in polynomial time.

Complementing the symbolic/algebraic methods, recent years have seen in-
tense study on optimization approaches to computational invariant theory. This
already enjoyed several success stories, compare Section 3.2. In the following we
present two optimization problems which can be used to decide NCM. For this,
recall that 0 ∈ G · v if and only if capG(v) = infg∈G ‖g · v‖2 = 0. Therefore, the
NCM problem is naturally linked to approximating the capacity of v.

Computational Problem 3.1.3 (Norm Minimization). Given π : G→ GL(V ),
v ∈ V and a precision ε > 0, determine g ∈ G such that ‖g · v‖2 ≤ capG(v) + ε.

On the other hand, recall that Kempf-Ness gives the duality (Equation (2.21))

capG(v) = 0 ⇔ inf
g∈G
‖µ(g · v)‖2 > 0.

Therefore, norm minimization and deciding (non)-membership in the null cone
are related to scaling the moment map to zero.5

4The algorithm was first published in Buchberger’s PhD thesis from 1965. We provide
references to the journal version from 1970 and a translation of Buchberger’s thesis from 2006.

5In fact, a result of [BFG+19] made this quantitive, compare Theorem 3.2.5.
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Computational Problem 3.1.4 (Scaling). Given π : G→ GL(V ), v ∈ V with
0 ∈ ∆G(v) and a precision ε > 0, determine g ∈ G such that ‖µG(g · v)‖ ≤ ε.

The following is of great importance for optimization approaches to compu-
tational invariant theory. The Kempf-Ness function Fv, see (2.8), is geodesically
convex on the manifold P = {g†g | g ∈ G} of positive definite matrices in G
[BFG+19, Proposition 3.13]; also compare Theorem 1.2.18 and Example 1.2.21.
Therefore, the Norm Minimization Problem 3.1.3 and the Scaling Problem 3.1.4
fall into the framework of geodesic convex optimization problems! If G is a torus,
they are even convex in the usual sense, compare Equation (3.1) below.
Remark 3.1.5. We note that NCM, Norm minimization and Scaling in the above
formulations may also be considered over R.6 In fact, we link these problems over
K ∈ {R,C} to maximum likelihood estimation in the part on algebraic statistics,
see e.g., Chapters 7 and 9. Moreover, NCM and Norm minimization still make
sense for non-reductive groups7 and even beyond the group setting; again there
are connections to statistics, see Section 9.5 and Chapters 8, 10 respectively. O

Finally, we note the following. Another equivalent formulation of the NCM
Problem 3.1.2 is to decide whether 0 /∈ ∆G(v). Therefore, NCM is also a spe-
cial case of the moment polytope membership problem. It asks whether a given
rational vector p ∈ QN is contained in the moment polytope ∆G(v) [BFG+19,
Problem 1.11]. This problem as well admits a scaling analogue [BFG+19, Prob-
lems 1.12], and there are many applications, e.g., to Kronecker polytopes and to
Horn’s problem. We refer to [BFG+18; BFG+19] for further details.

Applications

We give a brief overview on some applications of the mentioned Computational
Problems 3.1.1 – 3.1.4. The interested reader is encouraged to consult for further
details the introductions in [BGO+18; BFG+18; BFG+19], [GO18, Section 5]
and the references in these papers.

Algebraic Geometry. As already mentioned, the OCI problem plays an
important role in the construction of moduli spaces via GIT quotients [MFK94;
New78; Hos15]. The NCM problem is of particular interest, since the null cone
has to be excluded in the construction of projective GIT quotients.

Convex Optimization. If G = T is a torus, i.e., in the (connected) com-
mutative case, the Norm Minimization Problem 3.1.3 is convex. Indeed, consider
the action of T = GTd(C) on Cm via the matrix A ∈ Zd×m, see Example 1.3.16.8
Denote the jth column of A by Aj. Then we have for v ∈ Cm that

capT (v) = inf
t1,...,td∈C×

m∑
j=1

|vj|2
d∏
i=1

|ti|2Ai,j = inf
x∈Rd

m∑
j=1

|vj|2 exp
(
〈x,Aj〉

)
, (3.1)

6Actually, the first two problems admit nice relations between the solutions over R and those
over C, compare Proposition 2.2.18.

7However, one needs to be careful. First, if the group is non-reductive then norm minimiza-
tion and scaling are in general not geodesically convex problems. Second, for non-reductive
groups the topological null cone and the null cone cut out by invariants do not have to be
equal, compare Example 1.4.9.

8Recall that, up to identification, any torus action is of this form.
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where we used the change of variables xi = 2 log(|ti|). Equation (3.1) is a log-
convex optimization problem in x known as unconstrained geometric program-
ming . This huge class of convex optimization problems itself has manifold appli-
cations [DPZ67; Pet76; Eck80; BKVH07]. For example, it covers matrix scaling,
matrix balancing and array scaling, which arise in scientific computing and opti-
mal transport [Cut13; PR71]. It also contains commutative polynomial scaling,
which recovers Gurvit’s polynomial capacity [Gur04b; Gur06].

Physics. Especially the tensor scaling setting has important connections to
quantum information theory, see e.g., [Kly06; SOK14; Wal14; BFG+18], and to
quantum many-body physics [AMN+22].

Analysis. The Brascamp Lieb inequalities [BL76; Lie90] are a huge fam-
ily of inequalities which generalize many important inequalities such as Cauchy
Schwarz, Hölder and Brunn-Minkowski. Brascamp Lieb inequalities involve an
optimal constant known as the BL constant, which is related to invariant theory
through certain semi-invariants of the star quiver [GGOW18, Section 4.1]. In this
case, the NCM Problem 3.1.2 translates to deciding whether the BL constant is
infinite, while the Scaling Problem 3.1.4 means to approximate the BL constant
(given it is finite). Via a reduction to operator scaling polynomial time algorithms
for both instances are given in [GGOW18].

Computer Science & Complexity Theory. First, we note that geometric
complexity theory, an approach to complexity lower bounds, suggests that the
OCI Problem 3.1.1 should be in the complexity class P [Mul17]. In fact, [Mul17]
gives an algebraic polynomial time algorithm for OCI if the group is fixed. Non-
rational identity testing, which is a non-commutative analogue of the famous
polynomial identity testing (PIT), arises as the NCM problem for operator scal-
ing.9 This led to several deterministic polynomial time algorithms [GGOW16;
DM17; IQS18; AGL+18] for non-rational identity testing.

Statistics. Of course, one important link of the computational problems
to statistics is through matrix scaling. We discuss this relation in detail below.
In the commutative case the Lagrange dual of the Scaling Problem 3.1.4 covers
discrete entropy maximization [SV14; SV19].10 Moreover, the commutative case
connects to maximum likelihood (ML) estimation of log-linear models and itera-
tive proportional scaling11 [AKRS21b]. The results of [AKRS21b] are presented
in Chapter 7. The non-commutative setting is tightly related to ML estimation of
so-called Gaussian group models [AKRS21a]. These relations go even beyond the
usual setting of reductive groups and are discussed in Chapter 9.12 Furthermore,
connections to operator scaling have been used to obtain results on the sample
complexity for Tyler’s M estimator [FM20].

9The PIT problem is not an instance of the NCM problem [MW21].
10It is an interesting open problem whether similar connections between the continuous en-

tropy maximization problem (see e.g., [LV20]) and the non-commutative setting hold; private
communication with Jonathan Leake.

11also known as iterative proportional fitting
12Further work was stimulated by these connections [MRS21], which even goes beyond the

case of groups. This is discussed in detail in Chapters 8 and 10.
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Extended Example: Matrix Scaling

In the following we illustrate how matrix scaling naturally arises when con-
sidering the Computational Problems 3.1.2–3.1.4 for the restriction of πm,2 to
T := STm(C)2. Matrix scaling has manifold relations and applications such as
optimal transport, bipartite matching and statistics. We refer to the detailed sur-
vey [Ide16]. Let us first define what we mean by matrix scaling in the following.13

Definition 3.1.6. Let M ∈ Rm×m be a matrix with non-negative entries.

1. M is doubly stochastic if all row sums Mi,+ and all column sums M+,j of M
are one. The distance of M to doubly stochastic is

ds(M) :=
m∑
i=1

(Mi,+ − 1)2 +
m∑
j=1

(M+,j − 1)2. (3.2)

2. XMY is called a scaling ofM if X, Y ∈ Rm×m are positive definite diagonal
matrices.

3. M is scalable (to doubly stochastic), if there is a scaling XMY that is
doubly stochastic.

4. M is approximately scalable (to doubly stochastic), if for every ε > 0 there
exists a scaling XMY such that ds(XMY ) < ε. N

Note that we can parametrize X (and similarly Y ) as X = exp(diag(x)),
where x ∈ Rm. Now, matrix scaling arises via πm,2 restricted to the torus T =
STm(C)2.14 Indeed, remember from Example 1.3.18 that πm,2 has set of weights

Ω(πm,2) =
{

(εi, εj) | i, j ∈ [m]
}
⊆ (Rm)2.

Now, for v ∈ Cm×m the geometric program

capT (v) = inf
g,h∈STm(C)

m∑
i,j=1

|gii|2|vij|2|hjj|2 = inf
x,y∈Rm

m∑
i,j=1

|vij|2e〈(εi,εj),(x,y)〉 (3.3)

captures matrix scaling for Mv := (|vij|2)i,j, compare [RS89, Programs I and II].
Perhaps, the connection becomes even more apparent when considering the mo-
ment map for this action. Recall from Equation (2.11) in Example 2.2.8 that

µT (v) =
1

‖v‖2

(
r(Mv)−

‖v‖2

m
1m, c(Mv)−

‖v‖2

m
1m

)
, (3.4)

where r(Mv), c(Mv) ∈ Rm are the vectors of row respectively column sums ofMv.
Consequently, µT (v) = 0 if and only if the matrixm‖v‖−2Mv is doubly stochastic.
This allows to link matrix scaling to conditions from Kempf-Ness, Theorem 2.2.13.

13Instead of scaling to a doubly stochastic matrix one could, more generally, consider scaling
for given vectors r and c of row and column sums.

14On first glance, one might wonder why the left-right action of GTm(C)2 on Cm×m is not
used. However, this action is not meaningful for NCM as all matrices are unstable.
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Proposition 3.1.7. Let v ∈ Cm×m and set Mv :=
(
|vij|2

)
i,j
∈ Rm×m≥0 . Then

(i) Mv is scalable ⇔ ∃ t ∈ T : ‖µT (t · v)‖ = 0.

(ii) Mv is approximately scalable ⇔ inft∈T ‖µT (t · v)‖ = 0.

Proof. We prove the first part. Item (ii) follows similarly using continuity of the
moment map. First, assume there is some t ∈ T = STm(C)2 with µT (t · v) = 0.
Writing t = (g, h) one computes that(

Mt·v
)
ij

= |(t · v)ij|2 = |gii|2|vij|2|hjj|2. (3.5)

Therefore, Mt·v is a scaling of Mv and so is m‖t · v‖−2Mt·v. The latter is doubly
stochastic as µT (t · v) = 0 and we conclude that M is scalable.

Conversely, let XMvY be a scaling of Mv that is doubly stochastic. Since
X, Y are diagonal positive definite matrices we can write X = exp(2 diag(x)) and
Y = exp(2 diag(y)), where x, y ∈ Rm. We define the determinant one matrices

g := exp
(
−m−1x+

)
exp

(
diag(x)

)
and h := exp

(
−m−1y+

)
exp

(
diag(y)

)
to obtain t := (g, h) ∈ T . Via Equation (3.5) we compute Mt·v = λXMvY , where
λ := exp

(
− 2m−1(x+ + y+)

)
. As XMvY has row sums equal to one, we get

‖t · v‖2 =
∑
i∈[m]

(
Mt·v

)
i,+

= λ
∑
i∈[m]

(
XMvY

)
i,+

= λm.

Thus, m‖t · v‖−2Mt·v = λ−1Mt·v = XMvY which is doubly stochastic and hence
µT (t · v) = 0 as desired.

As a direct consequence of Kempf-Ness, Theorem 2.2.13 parts (e) and (f), and
Hilbert-Mumford Theorem 2.1.9 via weight polytopes,15 we obtain the following.

Corollary 3.1.8. Let v ∈ Cm×m and set Mv :=
(
|vij|2

)
i,j
∈ Rm×m≥0 . Then

(i) Mv is scalable ⇔ v is T -polystable ⇔ 0 ∈ relint(∆T (v))

(ii) Mv is approx. scalable ⇔ v is T -semistable ⇔ 0 ∈ ∆T (v)

Therefore, the NCM Problem 3.1.2 for matrix scaling is deciding whether Mv

is not approximately scalable. The Scaling Problem 3.1.4 essentially16 translates
to compute a scaling of Mv that is close to a doubly stochastic matrix.

Moreover, we can relate the Hilbert-Mumford characterization to bipartite
matching, also compare [GO18, Corollary 3.5].

Proposition 3.1.9. For v ∈ Cm×m, 0 ∈ ∆T (v) if and only if the bipartite graph
given by the zero pattern of v (equivalently, of Mv) admits a perfect matching.

15also note Remark 2.1.10
16up to a rescaling as in the proof of Proposition 3.1.7
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Proof. First, the weight polytope (2.2) of v under matrix scaling is given by

∆T (v) = conv
{

(εi, εj) | vij 6= 0
}
⊆ R2m.

Moreover, v induces the bipartite graph Gv = (I = [m], J = [m], E) with edges
E = {(i, j) ∈ I × J | vij 6= 0}. Now, assume Gv has a perfect matching, i.e., there
is a permutation σ ∈ Sm such that (i, σ(i)) ∈ E. Using

∑
i εi = 0m, we deduce

(0m, 0m) =
∑
i∈[m]

1

m
(εi, εσ(i)) ∈ ∆T (v).

Conversely, assume Gv does not admit a perfect matching. By Hall’s marriage
theorem [Hal35], there is a set W ⊆ I such that its neighbour set

N(W ) :=
{
j ∈ J | ∃ i ∈ I : (i, j) ∈ E

}
obeys k := |W | > |N(W )| =: l.

Without loss of generality, let W = [k] and N(W ) = [l], i.e., v is of the form(
A 0k,m−l
B C

)
, where A ∈ Ck×l and C ∈ C(m−k)×(m−l).

Consider a, b ∈ Zm defined by ai = −(m − k) for i ∈ [k] and ai = k for i > k;
respectively by bj = (m − l) for j ∈ [l] and bj = −l for j > l. By construction,
a+ =

∑
i ai = 〈a,1m〉 = 0 and b+ = 0. Therefore, we compute that

〈(a, b), (εi, εj)〉 = 〈a, εi〉+ 〈b, εj〉 = 〈a, ei〉+ 〈b, ej〉 = ai + bj .

Furthermore, we have that ai + bj > 0 whenever vij 6= 0, since k − l > 0 and
k + m − l > 0. Altogether, (a, b) defines a hyperplane in R2m which separates 0
from ∆T (v). Hence, 0 /∈ ∆T (v) which ends the proof. Let us point out that (a, b)
defines a character of T = STm(C)2 that sends v in the limit to zero.17

Combining the characterizations of semistability via Hilbert-Mumford and
Kempf-Ness we recover the known link between matrix scaling and bipartite
matching, see e.g., [RS89].

Theorem 3.1.10. A non-negative M ∈ Rm×m is approximately scalable if and
only if the bipartite graph given by M admits a perfect matching.

Array, Operator and Tensor Scaling

We briefly outline that the above results on matrix scaling generalize to array,
operator and tensor scaling from Example 1.3.5.

Three-dimensional array scaling (i.e., the action of STm(C)3 via πm,3) trans-
lates to scaling the non-negative tensor p = (|vijk|2) ∈ (R≥0)⊗3 to tristochastic.
The latter means that all slice sums are one, i.e., pi,+,+ = p+,j,+ = p+,+,k = 1
for all i, j, k ∈ [m]. This generalizes to d-dimensional array scaling. However, we

17This construction is also used to characterize instability for operator scaling, compare
[BD06, Proof of Theorem 2.1, part one].
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note that array scaling does not relate to d-partite hypergraph matching. Indeed,
the latter is NP-hard, while NCM for array scaling is solvable in polynomial time.

Operator Scaling (i.e., πm,2) relates to scaling a completely positive map to
“doubly stochastic”, meaning the two quantum marginals are the identity matrix,
[Gur04a], [GGOW16], [GO18, Section 2.2]. It has many applications such as non-
rational identity testing [GGOW16] and ML estimation for matrix normal models,
Section 9.4. Deciding NCM admits a representation-theoretic translation via so-
called shrunk subspaces18, [Kin94] (see Section 2.3) and [BD06] (Theorem 9.4.6).

Similar to operator scaling, tensor scaling (i.e., πm,d for d ≥ 3) translates
to scaling all quantum marginals to the identity, see [BGO+18] and [GO18, Sec-
tion 2.3]. It has manifold applications such as geometric complexity theory, quan-
tum information theory and ML estimation of tensor normal models, Chapter 9.

3.2 Scaling Algorithms

We discuss several scaling algorithms and their complexity for solving (some of)
the Computational Problems 3.1.2-3.1.4 for specific group actions. More precisely,
we discuss Sinkhorn scaling and operator scaling as well as convex optimization
for the commutative and geodesic convex methods for the non-commutative case.
Furthermore, we comment on related algebraic methods.

We highlight that this subsection prepares and connects to other chapters as
follows. Sinkhorn scaling and convex optimization methods are related to the
study of log-linear models, compare Section 7.3. Similarly, we revisit operator
scaling and geodesic convex optimization for ML estimation in Gaussian group
models, especially in Section 9.3 and Subsection 9.4.4. Moreover, the detailed
discussion of geodesic convex methods and results of [BFG+19] motivates Chap-
ters 4 and 5, which present barriers for geodesic convex methods.

Sinkhorn Scaling

For a non-negative matrix M consider matrix scaling in the approximate sense,
i.e., computing a scaling XMY with ds(XMY ) ≤ ε, compare Definition 3.1.6.
The matricesX and Y , if they exist, can be found by a simple and fast alternating
minimization approach. This method was introduced in [Sin64] and is known
as Sinkhorn’s algorithm, see Algorithm 3.1. We note that it admits a natural
generalization [SK67] to scale row and column sums to arbitrary marginal vectors.

The work [LSW00] gave the following complexity analysis of Sinkhorn’s algo-
rithm, also compare [GO18, Theorem 2.6].

Theorem 3.2.1. Let M ∈ Qm×m be a non-negative matrix with entries of bit
complexity at most b, and let T = O(m(b+ log(m))ε−1). Then Algorithm 3.1 on
input (M,T, ε) works correctly.

18We note that the recent preprint [FSG22] gives an alternating minimization procedure to
find a shrunk subspace, if existent, in deterministic polynomial time.
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Algorithm 3.1: Sinkhorn Scaling
Input : Non-negative matrix M ∈ Rm×m, a number of iterations N , a

precision ε > 0
Output: Either returns “M is not scalable”; or outputs X and Y such

that the scaling XMY satisfies ds(XMY ) ≤ ε

if M has a zero row or a zero column then
return M is not scalable.

end
Initialize X = Y = Im;
for k = 1 to N do

if ds(XMY ) ≤ ε then
return X and Y

else
X ← diag

(
(XMY )1,+, . . . , (XMY )m,+

)−1
X ; /* scale rows */

Y ← Y diag
(
(XMY )+,1, . . . , (XMY )+,m

)−1 ; /* scale col’s */
end

end
return M is not scalable.

We remark that Sinkhorn’s algorithm is frequently used in practice, e.g., for
quickly approximating the solution to optimal transport problems [Cut13]. Re-
cently, [AGL+21] provided a quantum implementation of Sinkhorn’s algorithm.

As discussed in Section 3.1, matrix scaling is captured by the action of T :=
STm(C)2 via πm,2. Similarly to Algorithm 3.2 below, the connection via Proposi-
tion 3.1.7 allows for a normalized19 version of Algorithm 3.1 over C, which solves
the Scaling Problem 3.1.4 for πm,2|T .

Finally, we note that Sinkhorn scaling also generalizes to d-dimensional ar-
ray scaling. There is a simple and fast alternating minimization algorithm that
produces ε-tristochastic scalings in time O(1/ε2) [AB22; LHCJ22].

Operator Scaling

The left-right action of SLm1(C)×SLm2(C) on (Cm1×m2)n captures operator scal-
ing20 from [Gur04a]. Algebraic and optimization-based algorithms have, indepen-
dently and nearly concurrently, resulted in polynomial time algorithms for NCM
[GGOW16; IQS18] and even for OCI [AGL+18; DM20a]. The optimization ap-
proaches in [GGOW16; AGL+18] also yield polynomial time algorithms for Norm
minimization 3.1.3 and Scaling Problem 3.1.4. However, they do not work over
fields in arbitrary characteristic like the algebraic methods in [IQS18; DM20a].
We stress that so far neither the algebraic nor the optimization approach solve
NCM for 3-tensor scaling in polynomial time.

In [Gur04a] Gurvits’ suggested, similar to Sinkhorn’s algorithm, an alternating
minimization method for operator scaling, also compare [GO18, Section 2.2]. In

19to ensure the determinant one condition
20Remember that π⊕nm,2 is operator scaling for the equidimensional case m = m1 = m2.
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Algorithm 3.2 we present a normalized version of Gurvits’ algorithm to solve the
Scaling Problem 3.1.4 for the left-right action. We compare this algorithm in
Subsection 9.4.4 to the flip-flop algorithm from statistics.

Algorithm 3.2: Alternating Minimization for Operator Scaling
Input : Y ∈ (Cm1×m2)n, a number of iterations N , a precision ε > 0
Output: Either returns “Y is unstable”, or outputs

g ∈ SLm1(C)× SLm2(C) with ‖µ(g · Y )‖F ≤ ε

if
∑n

i=1 YiY
†
i or

∑n
i=1 Y

†
i Yi is singular then

return Y is unstable.
end
Initialize g1 = g2 = Im;
for k = 1 to N do

if ‖µG(g · Y )‖ ≤ ε then
return g

else
%1 ←

∑
i(g · Y )i(g · Y )†i ; /* 1st quantum marginal */

g1 ← det(%1)1/(2m1)%
−1/2
1 g1 ; /* scale 1st quantum marginal */

%2 ←
(∑

i(g · Y )†i (g · Y )i

)T
; /* 2nd quantum marginal */

g2 ← det(%2)1/(2m2)%
−1/2
2 g2 ; /* scale 2nd quantum marginal */

end
end
return Y is unstable.

Remark 3.2.2. One can verify with Equation (2.19) that, after scaling the first
quantum marginal in Algorithm 3.2, the moment map at g · Y is zero in the
first component. Similarly, scaling the second quantum marginal results in a zero
second component of µG at g · Y , but this may violate the first component of
µG(g · Y ) being zero. Therefore, operator scaling, and similarly other alternating
minimization methods in computational invariant theory, can be seen as a “block-
coordinate gradient descent method” [BFG+19, page 12]. O

The formulation of Algorithm 3.2 is based on [BGO+18], which generalizes
the alternating minimization approaches for matrix and operator scaling to tensor
scaling. For fixed d ≥ 3, this yields a poly(m, 1/ε) time algorithm for the Scaling
Problem 3.1.4 [BGO+18, Theorem 1] and an exp(m log(m)) time algorithm for
NCM [BGO+18, Theorem 3.8].21 On the other hand, deciding NCM for operator
scaling only requires ε = (poly(m1,m2))−1 precision [Gur04a], so Algorithm 3.2
solves NCM in polynomial time.

Commutative Case

We shortly comment on algorithms in the case that G = T is a torus, also com-
pare [BFG+19, Subsection 1.4.1]. Since a vector v is in the null cone if and only

21Theorems4.2.1 and 4.5.1 certify that deciding NCM for πm,d, d ≥ 3, requires exponential
precision. Therefore, NCM cannot be solved in polynomial time by the methods in [BGO+18].
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if 0 /∈ ∆T (v),22 one can solve NCM in polynomial time via linear programming
[Kar84]. Moreover, remember from Equation (3.1) that Norm minimization is
unconstrained geometric programming, which admits a convex optimization for-
mulation. Thus, one can use ellipsoid methods, implicitly in [Gur04b; SV14;
SV19], and interior point methods [BLNW20] to obtain polynomial time algo-
rithms for the Computational Problems 3.1.2–3.1.4. Actually, the recent paper
[BDM+21] provides polynomial time algorithms for the OCI Problem 3.1.1, orbit
closure containment and even for orbit equality. These results are obtained by
combining linear programming with algebraic methods. Interestingly, efficient
optimization approaches to decide OCI seem to be intimately connected to the
abc-conjecture [BDM+23].

Geodesic Convex Optimization

Given the success of optimization techniques for the commutative case and the
geodesic convex structure in the non-commutative case, it is natural to aim for
developing similar geodesic convex methods that solve Problems 3.1.2–3.1.4 for
general reductive groups G.

Currently, the only implementable algorithms for Riemannian geodesic con-
vex optimization are analogues of gradient descent (first order) and trust region
methods23 (second order) [AMS08; AGL+18; Bač14; BFG+19; Bou23; ZS16].
In particular, there are no efficiently implementable geodesic convex counter-
parts to the interior point or cutting plane methods available.24 Of special inter-
est for computational invariant theory are [AGL+18] and [BFG+19]. The work
[AGL+18] provides geodesic second order methods specifically designed for op-
erator scaling. These yield polynomial running time algorithms for OCI, NCM,
norm minimization and scaling (Computational Problems 3.1.1–3.1.4).

The second order method of [AGL+18] was generalized to arbitrary reductive
groups G in [BFG+19, Algorithm 5.1]. The latter paper also presents a gradient
descent method for general reductive G, which can be seen as a generalization of
alternating minimization methods, compare Remark 3.2.2. In the following we
focus on [BFG+19], since it unifies existing optimization approaches in compu-
tational invariant theory, recovers polynomial running time for Computational
Problems 3.1.2–3.1.4 in many settings, but also adds several new cases.25 How-

22Recall that the proof of Theorem 2.1.9 was essentially due to Gordan’s Theorem - a version
of linear programming duality.

23also called box constrained Newton’s method
24We remark that, very shortly before the submission of this thesis, the preprint [NW23] ap-

peared. It provides the main stage of an interior point method on Riemannian manifolds. This
is achieved by studying self-concordant functions on Riemannian manifolds. These functions
are also studied in the related work [Hir22]. Due to time constraints, further details can unfor-
tunately not be provided here. However, we stress that the diameter bound in Theorem 5.1.2
still excludes polynomial running time, compare the Introduction of the thesis as well as the
paragraph “Implications of the main Results” in Section 5.1.

25In particular, [BFG+19] recovers polynomial running time for matrix scaling, simultaneous
conjugation, operator scaling and GL-actions on quiver, while it adds the new cases of SL-
actions on quivers with fixed number of vertices, and the tensor scaling action of SLm(C) ×
SLm(C) × SLk(C) on (Cm)⊗2 ⊗ Ck for fixed k. Besides, it also recovers certain polynomial
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ever, [BFG+19] cannot ensure polynomial time algorithms for tensor scaling.26
A very important technical contribution of [BFG+19] is to identify key com-

plexity parameters called weight norm and weight margin. They are used to
bound the running time of the first and second order method, to state a quan-
titative version of Kempf-Ness and to bound the diameter of an approximate
minimizer. We outline this in the following.

Definition 3.2.3. Consider π : G→ GL(V ) with Lie algebra representation Π.

1. [BFG+19, Definition 3.10] The weight norm of π is

N(π) := max
{
‖Π(X)‖op | X ∈ iLie(K), ‖X‖F = 1

}
,

where ‖ · ‖op is the usual operator norm on End(V ).

2. [BFG+19, Definition 3.18] The weight margin of π is

γT (π) := min
{

dist(0, conv(Γ)) | Γ ⊆ Ω(π), 0 /∈ conv(Γ)
}
,

where dist(0, conv(Γ)) := min{‖x‖ | x ∈ conv(Γ)} is the Euclidean distance
from zero to the polytope conv(Γ). N

By [BFG+19, Proposition 3.11], we have

N(π) = max{‖ω‖ | ω ∈ Ω(π)} , (3.6)

which justifies the name weight norm. With Eq. (4.5) we see for example that
N(πm,d) ≤

√
d. In [BFG+19] N(π) is used to bound the norm of the moment

map, [BFG+19, Lemma 3.12], and to provide a smoothness and a robustness
parameter [BFG+19, Propositions 3.13 and 3.15]. These results are then used
to control the step size in the algorithms of [BFG+19]. Upper bounds on the
weight norm are given in [BFG+19, Lemma 6.1 and Example 6.3]). On the other
hand, the weight margin γT (π) is the crucial parameter for running time bounds
in [BFG+19] and we report on lower bounds on γT (π) from [BFG+19, Section 6]
in Section 4.2.

Remark 3.2.4. Before we state the quantitative version of Kempf-Ness and the
diameter bound we note the following.

(i) In [BFG+19] the capacity of v is defined as infg∈G ‖g ·v‖, while in this thesis
it is the square of the latter: capG(v) = infg∈G ‖g · v‖2.

(ii) Norm minimization [BFG+19, Problem 1.10] is formulated via multiplica-
tive approximation: given v ∈ V with capG(v) > 0 and ε > 0, compute
g ∈ G such that

log
(
‖g · v‖

)
− 1

2
log
(

capG(v)
)
≤ ε. (3.7)

running times for moment polytope membership, e.g., for Horn’s problem.
26In fact, the results in Chapters 4 and 5 highly suggest that sophisticated methods, such as

geodesic interior point, are necessary to ensure polynomial running time.
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For v ∈ V with capG(v) > 0 the solutions between the additive and the multi-
plicative norm minimization are related as follows. If g ∈ G solves Computational
Problem 3.1.3, then using log(1 + x) ≤ x we see that it satisfies

log

(
‖g · v‖2

capG(v)

)
≤ log

(
1 +

ε

capG(v)

)
≤ ε

capG(v)
.

Hence, g solves Equation (3.7) for precision (2 capG(v))−1ε. On the other hand,
if h ∈ G solves Equation (3.7) for 0 < ε ≤ 1/2, then

‖h · v‖2

capG(v)
≤ exp(2ε) ≤ 1 + 4ε,

where we used exp(x) ≤ 1 + 2x for 0 ≤ x ≤ 1. Thus, h solves Computational
Problem 3.1.3 for precision 4 capG(v)ε. O

Theorem 3.2.5 (Quantitative Kempf-Ness, [BFG+19, Theorem 1.17]).
Let π : G→ GL(V ) be a rational representation and take v ∈ V \{0}. Then

1− ‖µG(v)‖F
γT (π)

≤ capG(v)

‖v‖2
≤ 1− ‖µG(v)‖2

F

4N(π)2
. (3.8)

Note that Equation (3.8) is indeed a quantitative version of and recovers
Kempf-Ness, Theorem 2.2.13(a). An important application of the above theorem
is that it connects solutions of norm minimization to those of scaling and vice
versa [BFG+19, Corollary 1.18].

Next, we define the diameter. It captures how far a solution for Norm min-
imization Problem 3.1.3 is away from the identity in the Riemannian manifold
G/K ∼= G ∩ PDN(C) (see page 22).

Definition 3.2.6 (Diameter, [FR21, Definition 4.18]). Given π : G → GL(V ),
v ∈ V and a precision ε > 0. We define the diameter as

Dv(ε) := inf
{
R > 0 | inf

g∈B′R
‖g · v‖2 ≤ capG(v) + ε

}
,

where B′R := {k exp(X) | k ∈ K,X ∈ iLie(K), ‖X‖F ≤ R}.27 N

The following (simplified) diameter bound is obtained from [BFG+19].

Theorem 3.2.7. As usual, assume Setting 3.0.1. In particular, π : G→ GL(V )
is a rational representation of a Zariski closed and self-adjoint subgroup G ⊆
GLN(C). Let v ∈ V with capG(v) > 0 and assume 0 < ε ≤ 2 capG(v). Then

Dv(ε) ≤
√
N

2
log(2N) +

√
N

2
γT (π)−1 log

(
2‖v‖2

ε

)
. (3.9)

27The set BR := {exp(X) | X ∈ iLie(K), ‖X‖F ≤ R} is a geodesic ball of radius R in G/K
about the identity. Since K acts isometrically on V , we see that Dv(ε) indeed captures the
distance of an approximate minimizer to the identity.
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Proof. Let ε′ > 0 and remember Remark 3.2.4(i) for consulting [BFG+19]. By
[BFG+19, Proposition 5.6], there exists a group element g ∈ G that satisfies
Equation (3.7), i.e., log

(
‖g · v‖

)
− 2−1 log

(
capG(v)

)
≤ ε′, and

log reg(g) ≤ log(2N) + γT (π)−1 log

(
‖v‖2

2 capG(v)ε′

)
, (3.10)

where reg(g) := ‖g‖2
F +‖g−1‖2

F . We use this to establish a bound on the diameter.
By the polar decomposition (Theorem 1.2.16), g = k exp(X) for some unitary

matrix k ∈ G∩UN andX ∈ p ⊆ SymN(C). Note that we can assume g = exp(X),
i.e., k = IN , since reg(·) is left UN -invariant and G∩UN acts isometrically on V .
Now, if additionally ε′ ≤ 1/2, then Remark 3.2.4 implies that

‖g · v‖2 ≤ capG(v) + ε′4 capG(v), hence Dv

(
ε′4 capG(v)

)
≤ ‖X‖F . (3.11)

To bound ‖X‖F , let λ1, . . . , λN ∈ R be the eigenvalues of the Hermitian matrix X
such that |λ1| ≤ · · · ≤ |λN |. Then ‖X‖F ≤

√
N |λN | and the exp(λi) are the

eigenvalues of exp(X). Now, we have

|λN | =

{
log(exp(λN)) ≤ log

(
‖ exp(X)‖F

)
= log

(
‖g‖F

)
if λN ≥ 0

log(exp(−λN)) ≤ log
(
‖ exp(−X)‖F

)
= log

(
‖g−1‖F

)
if λN < 0

In any case, ‖X‖F ≤
√
N |λN | ≤

√
N2−1 log reg(g). Combining the latter with

Equations (3.10) and (3.11) yields

Dv

(
ε′4 capG(v)

)
≤ ‖X‖F ≤

√
N

2
log(2N) +

√
N

2
γT (π)−1 log

(
‖v‖2

2 capG(v)ε′

)
.

Finally, for 0 < ε ≤ 2 capG(v) we can use ε′ := ε(4 capG(v))−1 ≤ 1/2 to obtain
the desired bound (3.9).

We end with a dichotomy regarding running times for the representation πm,d.
This motivated the work [FR21] which is presented in Chapters 4 and 5. For this,
we remark that it is desirable to solve the Norm minimization Problem 3.1.3 for
πm,d efficiently with high precision (HP). That is, solving it in poly(m, d, log(1/ε))
time. The state of the art regarding NCM and HP for πm,d is given in Table 3.1.

πm,d T = STm(C)d : commutative G = SLm(C)d : non-commutative

d = 2
matrix scaling: HP, NCM
(trust region, ellipsoid, IPM)

operator scaling: HP, NCM
(via trust region)

d = 3

array scaling: HP, NCM
(via IPM and ellipsoid;
not via trust region)

tensor scaling: HP, NCM
(no IPM available)

Table 3.1: Dichotomy for πm,d between d = 2 and d = 3. Green indicates
polynomial running time, while red means no polynomial time. IPM is a shortcut
for interior point method.

This raises the following questions. Can we explain the dichotomy between
d = 2 and d = 3 given in Table 3.1? More specifically:
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• Why do gradient descent and trust region methods do not seem to yield
polynomial time for HP and NCM when d = 3?

• Are known algorithms actually good enough for tensor scaling and only the
complexity analysis lacks to show this? Or do we need new algorithmic
approaches?

To answer these questions we investigate for NCM bounds on the precision
parameters weight margin and gap in Chapter 4. Regarding HP we provide expo-
nentially large lower bounds on the diameter for πm,3 in Chapter 5. These are the
main results of [FR21].28 They highly suggest that new algorithmic approaches29
for geodesic convex optimization are necessary to ensure polynomial time for HP
and NCM in the case of tensor scaling.

28These hardness results align with similar results for the algebraic approach: degree lower
bounds for invariant polynomials for the 3-tensor action pose significant challenges [DM20b].

29e.g., interior point like methods



Chapter 4

Bounds on Weight Margin and Gap

The material in this chapter is based on [FR21] and contains all upper bounds
on weight margin and gap from that paper. We give such upper bounds for tensor
scaling, polynomial scaling and SL actions on a certain family of quivers. In the
tensor scaling case, these exponentially small bounds explain the dichotomy for
null cone membership (NCM) from Table 3.1. Together with the diameter bounds
in Chapter 5 they strongly motivate the need of new geodesically convex methods,
such as interior-point like algorithms.

All main proof ideas for these upper bounds are due to myself.1 However,
the concept of freeness from Section 4.3 is well-known in the literature and we
give corresponding references. Moreover, the lower bound on the gap for a family
of quivers in Subsection 4.7.2 was proven by Cole Franks and Visu Makam. I
thank them for their permission to include these arguments. Their lower bound
showcases an important distinction between weight margin and gap, and answers
[FR21, Problem 4.27] in the affirmative.

Organization and Assumptions. In Section 4.1 we introduce the concepts
of weight margin and gap from [BFG+19]. A detailed discussion of the main
results and related literature is provided in Section 4.2. Afterwards, we present
in Section 4.3 the concept of free sets of weights, which is a crucial part of the
proof method, Section 4.4. We prove the main results on tensor scaling in several
steps, Section 4.5. This in turn allows to deduce similar bounds for polynomial
scaling, compare Section 4.6. Finally, Section 4.7 studies the SL-action on a
certain family of quivers: we give upper bounds on weight margin and gap, and
the lower bound on the gap by Cole Franks and Visu Makam.

The assumptions for this chapter are as in Setting 3.0.1.

4.1 Weight Margin and Gap

In the following we formally define the weight margin and gap, which were first
introduced in [BFG+19]. As a motivation, recall the “duality” (2.21), which can
be reformulated as (2.25) using the moment polytope ∆G(v).

Definition 4.1.1 ([FR21, Definition 4.3]). Let π : G → GL(V ) be a rational

1In contrast, the diameter bounds in Chapter 5 are due to my co-author Cole Franks.

79
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representation. We define the gap of π as2

γG(π) := min
{
‖µG(v)‖F | v 6= 0 is G-unstable

}
= min

{
dist

(
0,∆G(v)

)
| v 6= 0 is G-unstable

}
,

and the weight margin of π as

γT (π) := min
{
‖µT (v)‖F | v 6= 0 is T -unstable

}
= min

{
dist

(
0,∆T (v)

)
| v 6= 0 is T -unstable

}
.

= min
{

dist
(
0, conv(Γ)

)
| Γ ⊆ Ω(π), 0 /∈ conv(Γ)

}
.

The last equality uses that the weight polytope ∆T (v) is conv(Γ) for Γ = supp(v).
Hence, the above definition of γT (π) aligns with Definition 3.2.3. N

If G is a torus, i.e., G = T , then the weight margin is simply the gap. The
description of weight margin and gap via weight respectively moment polytopes
will enable us to find small upper bounds via extremal combinatorics of the
polytopes. Let us state two important remarks on weight margin and gap.
Remark 4.1.2 (Gap and Weight Margin are Precision Parameters).
By definition, the gap γG(π) is the largest constant C > 0 with the following
property: if ‖µG(v)‖F < C for some vector v ∈ V , then v is G-semistable. The
same statement holds for the weight margin γT (π) replacing G by T . Therefore,
these notions capture how small µG(g ·v) (respectively µT (t ·v)) must be to certify
null-cone non-membership. Hence, γG(π) and γT (π) are the precision parameters
if the Scaling Problem 3.1.4 is used to solve the NCM Problem 3.1.2. O

The next remark connects the gap to the classical notion of instability due to
Mumford [MFK94].
Remark 4.1.3 (Gap as Mumford’s Instability, [FR21, Remark 4.4]).
Denote the instability of a vector v by M(v), see e.g., [Nes84, Eq. (9)]. It is
positive if and only if v is unstable. Now, if v is non-zero and unstable then
dist(0,∆G(v)) ≥ 2M(v) by [Nes84, (13)]. Together with [Nes84, Theorem 6.1]
this implies

γG(π) = inf
{

2M(v) | v 6= 0, v is G-unstable
}
.

In words, the gap is twice the minimum value of all positive instabilities.
We note that Mumford’s instability M(v) is defined as a supremum over one-

parameter subgroups (1-psg’s) of G, and this supremum is attained. A 1-psg that
witnesses the instability M(v) is called adapted3 for v and such 1-psg’s play an
important role in [Kem78]. As a consequence of the above observation the gap
(and weight margin) may be studied via adapted 1-psg’s. O

Weight margin and gap satisfy the following inequality, also see [BFG+19,
Lemma 3.19].

2Gap and weight margin are well-defined, i.e., the minimum is attained. Indeed, the moment
maps give rise to continuous maps on P(V ) and the non-zero G-unstable (respectively non-zero
T -unstable) vectors form a projective subvariety of P(V ); in particular, they form a compact
set.

3Adapted 1-psg’s are also known as Kempf-optimal subgroups.
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Proposition 4.1.4 ([FR21, Proposition 4.6]). It holds that γT (π) ≤ γG(π).

Proof. Let v 6= 0 be G-unstable. Then there exists k ∈ K such that k · v is
T -unstable; see Theorem 2.1.5. We obtain

‖µG(v)‖F = ‖µG(k · v)‖F ≥ ‖µT (k · v)‖F ≥ γT (π) ,

where we used µG(k · v) = kµG(v)k† (Proposition 2.2.7) in the equality, and
Proposition 2.2.6 in the first inequality. We deduce γG(π) ≥ γT (π) from the
displayed equation.

Further properties of weight margin and gap are listed in Proposition 4.3.10.
Let us end this section with an interesting open problem which is already posed
in [BFG+19, Remark 3.20].

Problem 4.1.5. Is the quantitative non-commutative duality from Theorem 3.2.5
still true4 if one replaces the weight margin γT (π) by the gap γG(π)?

If the question is answered in the affirmative, then the (possibly larger) gap
can replace the weight margin in all appearances of running time bounds and the
diameter bound in [BFG+19].

4.2 Main Results and related Literature

In this section we present and discuss the main results on weight margin and gap.
First, we stress the relevance of these complexity parameters and review known
lower bounds. Afterwards, we state the main result on array/tensor scaling,
Theorem 4.2.1, and discuss its implications and relation to the literature. We
discuss and relate the main results on two other actions, which are studied in
Section 4.6 and 4.7 respectively. We end with an open Question 4.2.3 on possible
implications for moment polytopes over the real numbers.

Significance of Weight Margin and Gap. We discuss four important fea-
tures of the complexity parameters weight margin and gap.

First, the weight margin and gap capture the required precision needed in
the Scaling Problem 3.1.4 in order to decide the NCM Problem 3.1.2, compare
Remark 4.1.2. Thus, the smaller the weight margin (respectively gap) is, the
higher is the required precision to decide whether the optimization value of the
underlying geometric program (respectively geodesic optimization problem) is
positive. For an illustration of this fact the reader is referred to the extended
example on matrix scaling in Section 3.1.

Second, as a consequence of [BFG+19, Proposition 5.6] the weight margin
upper bounds the diameter (Theorem 3.2.7):

Dv(ε) = O
(√

N log(N) +
√
N γT (π)−1 log(‖v‖/ε)

)
.

4perhaps, in a reasonable adjusted manner
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Therefore, the smaller the weight margin is the larger the diameter may be, which
can prevent efficient algorithms. We point out that diameter upper bounds play
an important role in the literature, compare Section 5.1.

Third, the inverse of the weight margin appears (polynomially) in running
time bounds of geodesic methods in [BFG+19]. More precisely, it appears in
running time bounds for NCM,5 e.g., in [BFG+19, Corollary 1.26] and for Norm
Minimization, e.g., in [BFG+19, Theorem 1.22]. Therefore, an exponentially
small weight margin only ensures exponential running time, while if polynomially
small it yields a polynomial time algorithm.

Finally, we recall that the weight margin controls the lower bounds in the
quantitative non-commutative duality in Theorem 3.2.5. As a consequence, the
weight margin controls when an output for the Scaling Problem 3.1.4 is a valid
output for the Norm Minimization Problem 3.1.3 [BFG+19, Corollary 1.18]; and
it also characterizes the required precision in Norm Minimization to decide NCM
[BFG+19, Corollary 1.19]. Note that the second and third property would also
apply to the gap, if the (possibly larger)6 gap can replace the weight margin in
Theorem 3.2.5 (see open Problem 4.1.5).

Known lower Bounds. Before we state the main result for tensor scaling we
briefly review known lower bounds for the weight margin γT (π) (and hence the
gap by Proposition 4.1.4).

In the case of matrix scaling and operator scaling it is known that

Ω
(
m3/2

)
= γT (πm,2) = γT

(
π⊕nm,2

)
, (4.1)

see [LSW00; Gur04a]. This good bound can be attributed to the extraordinary
geometry of Ω(πm,2): its elements form the columns of a totally unimodular
matrix (up to a shift). Similar good bounds on the weight margin are given in
[BFG+19, Corollaries 6.11 and 6.18] provided the weight matrix is (up to a shift)
totally unimodular.

Moreover, [BFG+19, Theorem 6.24] gives lower bounds for GL-actions and for
SL-actions on quivers. The most general lower bounds are provided in [BFG+19,
Theorem 6.10]: they hold for any rational representation for a product of GL’s,
respectively of SL’s. The SL-case, i.e., [BFG+19, Theorem 6.10, Item 3], applied
to the representation πm,d capturing array and tensor scaling yields

Ω
(
(m
√
d)−md

)
= γT (πm,d), (4.2)

where we used N(πm,d) ≤
√
d (see Eq. (3.6) and below). Comparing this general

bound with Equation (4.1) for the special case d = 2 shows a huge discrepancy.
This actually relates to the dichotomy presented in Table 3.1 as follows.

Main Result on Tensor Scaling. Given the just mentioned discrepancy, it
is natural to ask whether the lower bound for the weight margin (and the gap)

5This is tackled by solving the scaling problem with the precision required by the weight
margin.

6recall Proposition 4.1.4
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is too pessimistic. The main result shows that this is not the case: the weight
margin and the gap become exponentially small in md for d ≥ 3.
Theorem 4.2.1 (General Tensor Gap, [FR21, Theorems 1.3 and 1.6]).
There is a constant C > 0, independent of m and d, such that for all d ≥ 3 and
m ≥ 2, the weight margin and the gap for d-tensor scaling satisfy

γT (πm,d) ≤ γG(πm,d) ≤ 2−Cdm.

A detailed statement on upper bounds for gap and weight margin can be
found in Theorem 4.5.1, and we show in Subsection 4.5.4 how to fill in the missing
values of m and d to obtain Theorem 4.2.1. We note that the upper bounds in
Theorems 4.2.1 and 4.5.1 are provided by constructing free tensors, whose support
has O(md) elements.
Remark 4.2.2 (Constant in Theorem 4.2.1). The constant C = 1/16 works for all
m ≥ 2, d ≥ 3. For m, d� 0 one can choose C ≈ 1/6, compare Theorem 4.5.1. O

Implications of Main Theorem. Taking the paragraph on the significance
of weight margin and gap into account, Theorem 4.2.1 implies the following.

First of all, it shows that exponentially high precision is required to solve NCM
for array and tensor scaling. In particular, current first and second order methods
do not seem to be able to solve NCM for tensor scaling in poly time. Certainly,
current running time bounds are exponential in md. Similarly, the main theorem
suggests that ellipsoid and interior point methods are necessary for array scaling
to ensure polynomial running time. This explains the dichotomy for NCM that
we presented in Table 3.1 (Section 3.2).

Moreover, Theorem 4.2.1 yields that the upper bound on the diameter from
Theorem 3.2.7 is exponentially large. In fact, Theorems 5.1.1 and 5.1.2 show that
diameter is exponentially large in the high precision regime for 3-order array and
tensor scaling. Finally, we point out that running time and diameter upper
bounds remain exponentially large even if we could replace the weight margin by
the gap. Hence, an affirmative answer to Problem 4.1.5 would not help for tensor
scaling.

Relation to the Literature. Theorem 4.2.1 aligns with existing results show-
ing that the d > 2 array/tensor case is more complex than the matrix case.
For example, it is known that the polytope of non-negative arrays with uni-
form marginals, known as the d-index axial assignment polytope, has many more
vertices when d ≥ 3 and that the vertices can have exponentially small entries
[Kra07; LL14].7 In contrast, for d = 2 this polytope is the Birkhoff-von Neumann
polytope which has integral vertices by the Birkhoff-von Neumann theorem.

Next we discuss the case of local dimension two, i.e., m = 2, for which The-
orem 4.5.1(a) provides a more concrete bound. For d-dimensional array scal-
ing γT (π2,d) is on the order of the weight margin of the d-dimensional hyper-
cube {±1}d. Therefore, γT (π2,d) = d−

d
2

(1+o(1)) by [AV97]. This bound is bet-
ter by a log(d) factor than the one in Theorem 4.5.1(a). However, an exp(−d)

7Actually, we use such a vertex with exponentially small entry from [Kra07] to settle the
d = 3 case.
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for the gap γG(π2,d) was not known before, also compare Remark 4.5.2. Still,
there are interesting results regarding γG(π2,d). First, using the algorithm in
[MS15] Maciążek and Sawicki numerically found several free8 tensors of format
(C2)⊗d with dist(0,∆G(v)) at most exp(−d); Theorem 4.2.1 confirms this expo-
nential behaviour for all d (and all m). Second, [MS18, Main result] shows that
dist(0,∆G(v))2, where 0 /∈ ∆G(v), tends for large d to the Gamma distribution
Γ(1/2, 2d).9 Therefore, the moment polytopes that witness the exponential be-
haviour in Theorem 4.5.1(a) are rare. It is an interesting open10 question whether
a similar result holds for other parameter regimes, e.g., tensors of order three.

Finally, note that the exponential rate of decay in Theorem 4.2.1 is tight up
to log factors (in the exponent), compare Equation (4.2). One may ask whether
the true bound is 2−Θ(md) or 2−Θ(md(logm+log d)) as in the lower bound. [AV97]
shows that the latter is correct in the commutative case for m = 2.

Weight Margin and Gap results for other group actions

In addition to the tensor scaling action, we also consider two other actions of
groups G of interest in computational invariant theory.

Polynomial Scaling. The first is the action of the special linear group on
the space of homogeneous d-forms C[x1, . . . , xn]d, in which G = SLn(C) acts by
g · p(x) = p(g−1x) for p ∈ C[x1, . . . , xn]d, see Section 4.6. This action and its
null cone are crucial for constructing a moduli space of hypersurfaces of degree
d in Pn−1(C), compare [Hos15, Section 7]. In fact, homogeneous d-forms were
among the objects studied earliest in computational invariant theory, and much
of the theory was developed to catalogue invariants of the SLn(C) action on
forms [Wey39]. Still, deciding null-cone membership for d = 3 is challenging. We
explain the difficulty by showing that the gap for this action is inverse exponential
in n as soon as d ≥ 3, see Theorem 4.6.2. This shows that the diameter bound
from [BFG+19] (Theorem 3.2.7) becomes exponentially large in n.

In the commutative case, i.e., T = STn(C), the capacity capT (p) recovers
Gurvit’s polynomial capacity [Gur04b; Gur06]. To decide whether the polyno-
mial capacity is positive and for high precision approximations the bounds in
Theorem 4.6.2 suggest the following. As soon as d ≥ 3 sophisticated methods
(like ellipsoid and interior point) are required to ensure polynomial running time,
while gradient descent and trust region methods do not suffice.

Quiver Action. Second, in Section 4.7 we study the natural SL-action on
a family of quivers. We note that quiver representations include the important
cases of operator scaling and an action that captures Horn’s problem. However,
efficient algorithms for SL-actions on quivers are only known for certain cases.
In this regard, the family in Section 4.7 is a very interesting example. The
quivers in this family have d vertices, each endowed with dimension m, and
d − 1 arrows. Theorem 4.7.1 gives the bound O(m−d) on the weight margin,

8see Section 4.3
9The moment polytope ∆G(v) is distributed as follows: [MS18] chooses d linearly indepen-

dent vertices uniformly from the 2d possible vertices; see [MS18, Sections III and IV] for details.
We stress that v (called φ in [MS18]) is not endowed with a distribution.

10to the authors knowledge
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i.e., it becomes exponentially small as the number of vertices d grows. Hence, the
general lower bound [BFG+19, Theorem 6.21, Item 4] cannot be improved in this
regard. However, the gap is only polynomially small inm and d, Theorem 4.7.6.11
Therefore, weight margin and gap differ significantly for this action; and the first
order method from [BFG+19] still suffices to decide NCM in polynomial time
thanks to the large gap. In contrast, when allowing m copies of each arrow in
the constructed quiver, i.e., m(d − 1) arrows in total, we can ensure the bound
O(m−d) for the gap as well, see Theorem 4.7.1. Therefore, current methods do
not run in polynomial time for this enlarged quiver.

Outlook

Since all actions studied in this chapter are defined over R and allow for moment
polytopes over R, Remark 2.2.21 naturally leads to the following question.12

Question 4.2.3. Do the upper bounds for the gap via complex moment poly-
topes from this chapter also hold for a gap defined analogously via real moment
polytopes?

4.3 Free Sets of Weights

We introduce the crucial tool for lifting bounds from the commutative (weight
margin and diameter) to the non-commutative case (gap and diameter).

Proposition 4.1.4 states that γT (π) ≤ γG(π) and we will see in Section 4.7
that γG(π) can be significantly larger than γT (π). Therefore, an upper bound for
the weight margin γT (π) need not necessarily apply to the gap γG(π). Still, many
presented bounds in the commutative case transfer to the noncommutative case.
For this, we crucially use the notion of a free subset of weights, which appears
in many references such as [Sja98; Fra02; CVZ23]. In [DK85] freeness is called
strong orthogonality and in [DM20b] it appears as uncramped.

Definition 4.3.1 ([FR21, Definition 4.7]). Let π : G → GL(V ) be a rational
representation with set of weights Ω(π).

A subset Γ ⊆ Ω(π) is called free if no two distinct elements of Γ differ by a
root13 of G. In other words, Γ ∩ (Γ + α) = ∅ holds for all roots α of G.

A vector v ∈ V \ {0} is called free if its support supp(v) ⊆ Ω(π) is free. N

For concreteness, let us translate the above general definition to the tensor
scaling setting given by the representation πm,d. Recall from Example 1.3.18 that
Ω(πm,d) = {εi | i ∈ [m]}d ⊆ (Rm)d.

Definition 4.3.2 (Free sets, [FR21, Definition 4.12]). A set W ⊆ [m]d is called
free, if i = (i1, . . . , id), j = (j1, . . . , jd) ∈ W with i 6= j always implies that
|{il 6= jl | l = 1, . . . , d}| ≥ 2. N

11This result is due to Cole Franks and Visu Makam.
12The author only recently became aware of the concept of moment polytopes for K = R.
13see Definition 1.3.20



86 Chapter 4. Bounds on Weight Margin and Gap

Proposition 4.3.3 ([FR21, Proposition 4.13]). Let W ⊆ [m]d and denote the
induced subset of weights of πm,d by

ΓW := {(εi1 , . . . , εid) | (i1, . . . , id) ∈ W } ⊆ (Rm)d.

Then W is a free set if and only if the set of weights ΓW ⊆ Ω(πm,d) is free.

Proof. The set of weights ΓW is free if and only if no two distinct elements of ΓW

differ by a root of G = SLm(C)d, see Definition 4.3.1. Furthermore, remember
from Example 1.3.21 that the roots of G are

(ei − ej, 0m, . . . , 0m), (0m, ei − ej, 0m, . . . , 0m), . . . , (0m, . . . , 0m, ei − ej) ∈ (Rm)d

for i, j ∈ [m] with i 6= j. Now, if W ⊆ [m]d is not free, then there exist i =
(i1, . . . , id), j = (j1, . . . , jd) ∈ W with i 6= j such that they exactly differ one
component. Without loss of generality we assume i1 6= j1 and il = jl for l =
2, . . . ,m. But then

(εi1 , . . . , εid) = (εj1 , . . . , εjd) + (ei1 − ej1 , 0m, . . . , 0m),

and hence ΓW is not free. The argument can be inverted to show that if ΓW is
not free, then W is not free.

Remark 4.3.4. We point out that the notion of freeness in [CVZ23] requires less
as follows. The authors of [CVZ23] call a tensor free, if there exist ordered bases
of the tensor factors, such that the support with respect to these bases is free.
In contrast, free in this thesis means that the support is free with respect to the
ordered standard bases.14

Moreover, [CVZ23, Remark 4.17] gives a dimension argument that (Cm)⊗3

does contain non-free tensors as soon as m ≥ 5. These non-free tensors from
[CVZ23] are by the above also non-free in our sense. O

We illustrate consequences of Proposition 4.3.3 in two examples.

Example 4.3.5 (Freeness for Operator Scaling). Let us consider operator scaling,
i.e., the representation π⊕nm,2. For n = 1 and M ∈ Cm×m, let s(M) := {(i, j) ∈
[m]2 |Mij 6= 0} so that

supp(M) = Γs(M) =
{

(εi, εj) |Mij 6= 0
}
⊆ Ω(πm,2).

Now, Proposition 4.3.3 shows that M is free if and only if M has at most one
non-zero entry in each row and in each column. In particular, M is free and
invertible if and only if s(M) = s(P ) for a permutation matrix P .

More generally, for n ≥ 1 and M = (M1, . . . ,Mn) ∈ (Cm×m)n we have

supp(M) =
{

(εi, εj) | ∃ k ∈ [n] : (Mk)ij 6= 0
}
⊆ Ω

(
π⊕nm,2

)
= Ω(πm,2).

Therefore, M = (M1, . . . ,Mn) is free if and only if there is a permutation matrix
P such that s(M1), . . . , s(Mn) ⊆ s(P ). ♦

14This comes from the fact that we choose the maximal torus T to be in GTN (C) ⊆ GLN (C).
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Example 4.3.6 (Freeness and Quantum Marginals). Let d = 3 and consider a
free tensor v ∈ (Cm)⊗3 with respect to tensor scaling πm,d. Then its quantum
marginals (see Example 2.2.12) are diagonal which is exemplified in the following.
The first quantum marginal of v is MM †, where M ∈ Cm×m2 given by Mi,(j,k) =
vijk is a flattening of v. For s, t ∈ [m] with s 6= t we compute

(
MM †)

s,t
=

m∑
j,k=1

Ms,(j,k) Mt,(j,k) =
m∑

j,k=1

vs,j,k vt,j,k = 0, (4.3)

where we used that vs,j,k vt,j,k = 0 holds by freeness of v and Proposition (4.5.13).15
This principle generalizes to tensors of any order d. Each off-diagonal entry

of a quantum marginal is the inner product between distinct d − 1-dimensional
slices of a tensor, and if the support of the tensor is free then the supports of such
slices are entirely disjoint. Hence, the quantum marginals are diagonal. ♦

Recall that for πm,d the components of the moment map are, up to addition of
a scalar multiple of Im, given by the quantum marginals, compare Example 2.2.12.
Thus, µG(v) is diagonal for a free tensor v ∈ (Cm)⊗d and it follows that µG(v) =
µT (v). It is known that this fact generalizes to any rational representation and
we use it to transfer bounds for the weight margin to bounds on the gap via
Proposition 4.3.7. The latter appears implicitly in, e.g., [Sja98, Lemma 7.1] and
[Fra02, Proposition 2.2], but we prove it below for completeness.

Thanks go to Visu Makam for pointing out that the equality µG(v) = µT (v)
still holds under a weaker condition on v, when the representation decomposes
into orthogonal subrepresentations.16 This can be used to turn a weight margin
upper bound for quivers into a gap upper bound, see Theorem 4.7.1. The weaker
condition also appears in [DM20b, Theorem 6.5].

Proposition 4.3.7 ([FR21, Proposition 4.8]). Let π : G → GL(V ) be a rational
representation over C and suppose V =

⊕k
i=1 Vi is an orthogonal decomposition

into G-subrepresentations with respect to the K-invariant inner product, that is
used to define µT and µG. Let v =

∑k
i=1 vi ∈ V \ {0}, vi ∈ Vi be such that all

supports Γi := supp(vi) ⊆ Ω(π) are free. Set Γ :=
⋃
i Γi = supp(v). Then:

(i) For all t ∈ T it holds that µG(t · v) ∈ iLie(TK) and µG(t · v) = µT (t · v).

(ii) If 0 /∈ ∆T (v) = conv(Γ), then the upper bound dist(0, conv(Γ)) for the
weight margin γT (π) also applies to the gap, i.e., γG(π) ≤ dist(0, conv(Γ)).

Proof. The action of T preserves the supports Γi, and in particular preserves their
freeness. Hence, it suffices to show µG(v) ∈ iLie(TK), which immediately yields
µG(v) = µT (v) by Proposition 2.2.6. Moreover, the orthogonality with respect to
the K-invariant inner product shows µG(v) = H1 + · · ·+Hk, where Hi = µ

(i)
G (vi)

is given by the moment map µ
(i)
G of the G-module Vi if vi 6= 0 and otherwise

Hi = 0. The latter holds similarly for µT .
15Equation (4.3) suggests why freeness is called strong orthogonality in [DK85]. The distinct

slices Ms,· and Mt,· of v are not only orthogonal - actually each summand in (4.3) is zero.
16In a preliminary version of [FR21] Proposition 4.3.7 was stated for the case k = 1.
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Therefore, we may assume k = 1, i.e., v 6= 0 has free support Γ. We write
v =

∑
ω∈Γ vω with vω ∈ Vω. Fix ω ∈ Γ, some root α of G (see Definition 1.3.20)

and A ∈ Lie(G)α. We have Π(A)vω ∈ Vω+α by Proposition 1.3.22, where either
Vω+α = {0} or ω + α ∈ Ω(π)\Γ by freeness. Since distinct weight spaces are
orthogonal (see Example 2.2.8), we conclude that 〈vσ,Π(A)vω〉 = 0 for all σ ∈ Γ.
Thus, 〈v,Π(X)v〉 = 0 for all X ∈

⊕
α Lie(G)α. In particular, tr

(
µG(v)X

)
= 0

holds for all X ∈ iLie(K)∩
⊕

α Lie(G)α. The root space decomposition of Lie(G),
see Definition 1.3.20, and Lie(T ) = Lie(TK) ⊕ iLie(TK) yield the orthogonal
decomposition iLie(K) = iLie(TK) ⊕ (iLie(K) ∩

⊕
α Lie(G)α). Altogether, we

conclude µG(v) ∈ iLie(TK). The first statement is proven.
For the second claim, assume 0 /∈ conv(Γ) = ∆T (v). Then v is T -unstable. In

particular, v is G-unstable and thus

γG(π) ≤ dist
(
0,∆G(v)

)
.

On the other hand, we have

dist
(
0,∆G(v)

)
= inf

g∈G
‖µG(g · v)‖F ≤ inf

t∈T
‖µG(t · v)‖F

(∗)
= dist

(
0, conv(Γ)

)
,

where we used µG(t · v) = µT (t · v) in (∗). We conclude by combining the two
inequalities.

Remark 4.3.8 ([FR21, Remark 4.9]). It is well-known that any rational repre-
sentation π : G→ GL(V ) can be decomposed into irreducible subrepresentations
that are pairwise orthogonal with respect to the fixed K-invariant inner prod-
uct. Therefore, to apply Proposition 4.3.7 it suffices to ensure freeness on the
irreducible subrepresentations. O

A useful consequence of Proposition 4.3.7 is that semi/polystability of a free
vector under G may be checked on the torus T .17 This application of freeness
can be found in [DK85, Proposition 1.2] and [DM20b, Theorem 6.5] to construct
vectors with closed G-orbit.

Corollary 4.3.9. Let v ∈ V be a free vector. If v is T -semistable (respectively
T -polystable) then v is G-semistable (respectively G-polystable).

Proof. Since v is free we have µT (t·v) = µG(t·v) for all t ∈ T , by Proposition 4.3.7.
If v is T -polystable, then there exists some t ∈ T with 0 = µT (t ·v) = µG(t ·v), by
Kempf-Ness Theorem 2.2.13(e) for the action of T . But the same part of Kempf
Ness for the action of G yields that v is G-polystable as t ∈ G and µG(t · v) = 0.

Similarly, if v is T -semistable we obtain that v is G-semistable using Kempf-
Ness, Theorem 2.2.13(f), and continuity of the moment maps µT and µG.

We end with an interesting connection between weight margin and gap.

Proposition 4.3.10 ([FR21, Proposition 4.10]). Let π : G→ GL(V ) be a rational
representation over C and denote its n-fold direct sum by π⊕n.

17I thank M. Levent Doğan for a fruitful discussion, in which we rediscovered this fact.
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1. The weight margin satisfies γT (π) = γT (π⊕n) for all n ≥ 1.

2. The gap satisfies γG(π⊕n) ≥ γG
(
π⊕(n+1)

)
for all n ≥ 1.

3. There exists some n ≤ dim(V ) such that γG(π⊕n) = γT (π⊕n) = γT (π).

Proof. We note that π⊕n is given by the action g · (v1, . . . , vn) = (g · v1, . . . , g · vn)
on V n. Furthermore, the K-invariant inner product 〈·, ·〉 of V induces naturally
a K-invariant product on V n by

〈(v1, . . . , vn), (w1, . . . , wn)〉V n :=
n∑
i=1

〈vi, wi〉.

For the first claim, just remember that Ω(π⊕n) = Ω(π) by Remark 1.3.15.
For the second claim, let (v1, . . . , vn) ∈ V n \ {0} be G-unstable such that

‖µG(v1, . . . , vn)‖F = γG(π⊕n). Then (v1, . . . , vn, 0) ∈ V n+1 \ {0} is G-unstable as
well, so ‖µG(v1, . . . , vn, 0)‖F ≥ γG

(
π⊕(n+1)

)
. Moreover, under the inner prod-

uct 〈·, ·〉V n+1 the first n copies of V are orthogonal to the last copy. Thus,
we deduce µG(v1, . . . , vn, 0) = µG(v1, . . . , vn) and hence ‖µG(v1, . . . , vn, 0)‖F =
‖µG(v1, . . . , vn)‖F = γG(π⊕n).

Finally, let Γ = {ω1, . . . , ωn} ⊆ Ω(π) be a witness of the weight margin, i.e.,
0 /∈ conv(Γ) and dist(0, conv(Γ)) = γT (π). We have n ≤ |Ω(π)| ≤ dim(V ) by the
weight space decomposition V =

⊕
ω∈Ω(π) Vω, see Theorem 1.3.14. Now, for each

ωi ∈ Γ fix some weight vector vi ∈ Vωi \{0}. Then v := (v1, . . . , vn) ∈ V n satisfies
the assumptions of Proposition 4.3.7, because Γi = {ωi} is free and the distinct
copies of V are orthogonal under 〈·, ·〉V n . Thus, we obtain

γG(π⊕n) ≤ dist
(
0, conv(Γ)

)
= γT (π) = γT (π⊕n),

but on the other hand γG(π⊕n) ≥ γT (π⊕n) by Proposition 4.1.4.

4.4 Proof Method

In this short section we present the main steps how we prove upper bounds on
the weight margin γT (π) and the gap γG(π).

1. We exhibit a set of weights Γ ⊆ Ω(π) such that 0 /∈ conv(Γ). Hence,
γT (π) ≤ dist(0, conv(Γ)) by Definition 4.1.1.

2. We prove an upper bound on dist(0, conv(Γ)) to obtain a bound on γT (π).

3. If Γ satisfies the assumptions of Proposition 4.3.7 (e.g., if Γ is free), then
also γG(π) ≤ dist(0, conv(Γ)) holds by Proposition 4.3.7(ii). Therefore, the
upper bound from the second step also applies to the gap γG(π).

For the first and second step we often use Lemma 4.4.1 below. Recall that
an affine linear combination of v1, . . . , vk ∈ Rm is λ1v1 + · · · + λkvk for λi ≥
0,
∑k

i=1 λi = 1. The affine hull aff(S) of a set S ⊂ Rm is the set of all affine linear
combinations of finite subsets of S, or equivalently the affine space of lowest
dimension containing S. Furthermore, remember that εi = ei − 1

m
1m.



90 Chapter 4. Bounds on Weight Margin and Gap

Lemma 4.4.1 ([FR21, Lemma 2.2]). In Rm we have

m∑
i=1

1

m
εi = 0m (4.4)

and this is the only affine linear combination of ε1, . . . , εm giving zero.

Proof. One calculates directly that
∑

i
1
m
εi = 0m. To show uniqueness of this

affine combination, we note that the vectors e2, . . . , em,1m are linearly indepen-
dent. Thus, ε2, . . . , εm are linearly independent. On the other hand, ε1, . . . , εm
are linearly dependent. Therefore, {(λ1, . . . , λm) ∈ Rm |

∑
i λi εi = 0m} is a one-

dimensional subspace of Rm, which yields the uniqueness of the affine linear
combination.

Finally, for εi ∈ Rm we make the simple observation that

‖εi‖2 =

(
1− 1

m

)2

+ (m− 1)
1

m2
= 1− 1

m
, hence ‖(εi1 , . . . , εid)‖ ≤

√
d . (4.5)

4.5 Tensor Scaling

We recall that πm,d is the natural representation of G = SLm(C)d on (Cm)⊗d (Ex-
ample 1.3.5), which captures tensor scaling while its restriction to T = STm(C)d

captures array scaling. Moreover, remember from Example 1.3.18 that

Ω(πm,d) =
{

(εi1 , . . . , εid) | i1, . . . , id ∈ [m]
}d ⊆ (Rm)d.

The purpose of this section is to prove exponentially small upper bounds on the
weight margin γT (πm,d) and the gap γG(πm,d) for the case d ≥ 3.

Theorem 4.5.1 (Bounds for Tensor Gap, [FR21, Theorems 2.1 and 4.11]).
Let πm,d be the natural representation of G := SLm(C)d on (Cm)⊗d. The weight
margin γT (πm,d) and the gap γG(πm,d) are bounded as follows:

(a) If m = 2 and d ≥ 3, then γT (π2,d) ≤ γG(π2,d) ≤ 2−
d
2

+1.

(b) If m ≥ 3 and d = 3, then γT (πm,3) ≤ γG(πm,3) ≤ 2−m+1.

(c) If m ≥ 3 and d = 6r − 3 for some integer r ≥ 2, then

γT (πm,d) ≤ γG(πm,d) ≤
√

6

(m− 1)
√
r

2−r(m−1)+1 ≤ 2−r(m−1)+1 = 2−
(d+3)(m−1)

6
+1.

We prove parts (a), (b) and (c) of the preceding theorem in Subsections 4.5.1,
4.5.2 and 4.5.3, respectively. To do so, we proceed as described in Section 4.4.

Even though Theorem 4.5.1 only applies to certain d ≥ 3, we can “pad”
tensor factors to obtain similar results for all d ≥ 3. This padding procedure is
described in Subsection 4.5.4 and allows us to conclude Theorem 4.2.1 from the
above Theorem 4.5.1.
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4.5.1 Local Dimension two: Qubits

In this subsection we prove part (a) of Theorem 4.5.1, which states that γT (π2,d)
and γT (π2,d) are exponentially small in d. We start with a remark on related
literature.

Remark 4.5.2. We point out that γT (π2,d) = 2−Θ(d log d) follows from [AV97]. This
statement is actually stronger than the provided bound from Theorem 4.5.1(a).
However, the result in [AV97] is obtained by describing an involved algorithm
that constructs ill-conditioned ±1-matrices. Thus, it is difficult to verify whether
their construction produces free sets of weights. The latter is needed to lift the
bound to the gap γG(π2,d). In contrast, the construction presented here is simpler
and proven to be free. O

In the following we construct a subset of

Ω(π2,d) =
{

(εi1 , . . . , εid) | i1, . . . , id ∈ [2]
}
⊆
(
R2
)d
,

which witnesses the exponentially small weight margin. For this, we construct a
matrix with entries in [2], and each row of the matrix will correspond to an element
of Ω(π2,d). For example, the row (1, 2, 2) would correspond to (ε1, ε2, ε2) ∈ Ω(π2,3).
To do so, we consider the matrices

A2 :=

(
1 1
2 1

)
, B1 :=

(
1 1
2 2

)
, B2 :=

(
1 2
2 2

)
, B3 :=

(
2 1
1 1

)
,

and define recursively

A2r+2 :=


B1

A2r
...
B1

B2 · · · B2 B3

 =


A2 B1 · · · B1

B2 B3
. . . ...

... . . . . . . B1

B2 · · · B2 B3

 (4.6)

for r ≥ 1. Figure 4.1 is supplied as a visualization aid.
We remark that the entry of A2r at position (i, j) is independent of r and

denote it by a(i, j). We set for r ≥ 1

Γ2,2r :=
{(
εa(i,1), εa(i,2), . . . , εa(i,2r)

)
| i ∈ [2r]

}
⊆ Ω(π2,2r) ⊆

(
R2
)2r
,

Γ2,2r+1 :=
{(
εa(i,1), εa(i,2), . . . , εa(i,2r), εχ(i)

)
| i ∈ [2r]

}
⊆ Ω(π2,2r+1) ⊆

(
R2
)2r+1

,

where χ : N → {1, 2}, i 7→ i mod 2. That is, Γ2,2r is the subset of Ω(π2,2r)
induced by the rows of A2r and Γ2,2r+1 is obtained by alternately appending ε1
or ε2 to the 2r-many elements of Γ2,2r.

Lemma 4.5.3 ([FR21, Lemma 2.3]). For r ≥ 1, it holds that 0 /∈ aff(Γ2,2r) and
0 /∈ aff(Γ2,2r+1).

Proof. By construction, 0 ∈ aff(Γ2,2r+1) implies 0 ∈ aff(Γ2,2r), since one could
choose the same coefficients for the affine linear combination. Hence, it suffices
to prove 0 /∈ aff(Γ2,2r). We proceed by induction on r ≥ 1. For r = 1, it is clear
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A4 =


∗ ∗
∗

∗ ∗

∗ ∗
∗ ∗

 ,


1/4
1/4
1/4
1/4

 ; A6 =


∗ ∗
∗

∗ ∗ ∗ ∗

∗ ∗
∗ ∗

∗ ∗

∗ ∗ ∗
∗ ∗

 ,


1/4
1/4
1/8
1/8
1/8
1/8


weights for A8 :

[
1/4 1/4 1/8 1/8 1/16 1/16 1/16 1/16

]T
Figure 4.1: The positions of the ones in A4 and A6 are marked by ∗ and the cells
are coloured according to whether they belong to A2, B1, B2 or B3. In square
brackets, we indicated the weights of the convex combination from (4.9).

that 0 /∈ aff(Γ2,2) ⊆ R2 × {ε1}. Now assume that 0 /∈ aff(Γ2,2r). For the sake of
contradiction, let

2r+2∑
i=1

λi
(
εa(i,1), εa(i,2), . . . , εa(i,2r+2)

)
= 0 ∈

(
R2
)2r+2 (4.7)

be an affine linear combination of Γ2,2r+2. Then Equation (4.7) gives for any
R2-component, i.e., for any k ∈ [2r + 2], an affine linear combination of ε1, ε2:

2r+2∑
i=1

λi εai,k = 0
(∗)
=

1

2
(ε1 + ε2), (4.8)

where we used Lemma 4.4.1 in (∗). For the following take a look at (4.6) and
Figure 4.1. Considering the scalar factor of ε1 in (4.8) for k ∈ {1, 2r+ 1, 2r+ 2},
we conclude with the construction of A2r+2 in (4.6) that

r+1∑
j=1

λ2j−1︸ ︷︷ ︸
k=1

=
1

2
= λ2r+2 +

r∑
j=1

λ2j−1︸ ︷︷ ︸
k=2r+1

=
1

2
= λ2r+2 +

r+1∑
j=1

λ2j−1︸ ︷︷ ︸
k=2r+2

.

Hence, λ2r+2 = 0 combining the cases k = 1 and k = 2r + 2. Furthermore,
k = 2r+1 and k = 2r+2 give λ2r+1 = 0. Therefore, the first 2r-many components
in Equation (4.7) show 0 ∈ aff(Γ2,2r), which contradicts our induction hypothesis.

Lemma 4.5.4 ([FR21, Lemma 2.4]). It holds that dist(0, conv(Γ2,2r)) ≤ 2−r+
1
2

and dist(0, conv(Γ2,2r+1)) ≤ 2−r+
1
2 .

Proof. First, we prove the inequality for conv(Γ2,2r). For i ∈ [2r] let ωi :=(
εa(i,1), . . . , εa(i,2r)

)
∈ (R2)

2r be the weight in Γ2,2r that corresponds to the ith row
of A2r. Consider the convex combination (see Figure 4.1 for an illustration)

(x1, . . . , x2r) := 2−r(ω2r−1 + ω2r) +
r−1∑
l=1

2−l−1(ω2l−1 + ω2l) ∈
(
R2
)2r

. (4.9)
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Note that xi ∈ R2. We will argue that (x1, . . . , x2r) = 2−r+1(02, . . . , 02, ε1). Since
x is a convex combination of the elements in Γ2,2r, the statement then follows
from ‖ε1‖ = 2−

1
2 , compare (4.5).

We consider A2r like in its construction (4.6) as r × r block matrix with
block entries being 2 × 2 matrices. For m ∈ [r] the two weights ω2m−1 and ω2m

correspond to the mth block row of A2r and have the same scalar factor in (4.9).
Hence, whenever for i ∈ [2r] the ith column of the mth block row of A2k contains
exactly one entry equal to one (and so the other entry equals two), then the
contributions of ω2m−1 and ω2m to xi cancel due to ε1 + ε2 = 02. In particular,
in (4.9) all contributions of block entries equal to B1 cancel. Therefore the last
column of A2r gives

x2r = 2−r(ε1 + ε1) = 2−r+1ε1.

Furthermore, x1 = x3 = . . . = x2r−1 = 02 using that also the first columns of A2,
of B2 and of B3 contain exactly one entry equal to one. For r = 1 we are done.
If r ≥ 2, then reading off the second column of A2r, we find

x2 = 2−2(ε1 + ε1)︸ ︷︷ ︸
first block row

+ 2−r(ε2 + ε2)︸ ︷︷ ︸
last block row

+
r−1∑
l=2

2−l−1(ε2 + ε2)︸ ︷︷ ︸
middle rows

= 2−1(ε1 + ε2) = 02.

Analogously, as B1 does not contribute we compute for j = 2, 3, . . . , r − 1 that

x2j = 2−j−1(ε1 + ε1)︸ ︷︷ ︸
jth block row

+ 2−r(ε2 + ε2)︸ ︷︷ ︸
last block row

+
r−1∑
l=j+1

2−l−1(ε2 + ε2)︸ ︷︷ ︸
in between rows

= 2−j(ε1 + ε2) = 02,

because the second columns of B2 and B3 are, respectively, (2, 2)T and (1, 1)T.
This proves the inequality in the case Γ2,2r.

By construction, for Γ2,2r+1 the same convex combination works, because the
last R2-component does not contribute as the entries of the weights alternate
between ε1 and ε2.

Noting that for odd d = 2r+ 1 one has −r+ 1/2 = −(d/2) + 1, Lemma 4.5.3
and Lemma 4.5.4 together yield the bound from Theorem 4.5.1(a) for the weight
margin. It remains to show that the witness sets are free to deduce the same
bound for the gap. We use the characterization of freeness from Proposition 4.3.3.

Proposition 4.5.5 ([FR21, Proposition 4.14]). For r ≥ 2, the rows of A2r form
a free subset of [2]2r, i.e., Γ2,2r is free. Moreover, for r ≥ 1 the set of weights
Γ2,2r+1 is free.

Proof. First, note that Γ2,3 = {ε1,1,1, ε2,1,2} is free. Now, let r ≥ 2. If Γ2,2r is free,
then Γ2,2r+1 is also free by construction. Thus, we are left to prove the former.

Consider A2r as defined in Equation (4.6). We must show that distinct rows
of A2r differ in at least two entries for all r ≥ 2. The claim is proven by induction
on r ≥ 3. For r = 3, we verify the claim by inspection of A6. Let ai be the ith
row of A6; its definition is recalled in the left-hand table below. The right-hand
table lists for each pair ai, aj with i < j two distinct entries in which ai and aj
differ, which shows the claim for r = 3.
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entry 1 2 3 4 5 6
a1 1 1 1 1 1 1
a2 2 1 2 2 2 2
a3 1 2 2 1 1 1
a4 2 2 1 1 2 2
a5 1 2 1 2 2 1
a6 2 2 2 2 1 1

a2 a3 a4 a5 a6

a1 1,3 2,3 1, 2 2,4 1,2
a2 1,2 2,3 1,2 5,6
a3 1,3 3,4 1, 4
a4 1,4 3,4
a5 1,3

In fact, the table also proves the claim for r = 2, since a1, . . . , a4 already pairwise
differ in at least two of the first four entries.

Now assume that the claim holds for some fixed r ≥ 3. Let ai, aj be distinct
rows of A2r+2; we will show they differ in at least two entries. If 1 ≤ i < j ≤ 2r,
then by our inductive hypothesis there is nothing to prove because the first 2r
rows of A2r+2 contain A2r as a submatrix.

To complete the proof, it is enough to show that the 4 × (2r + 2) submatrix
formed by restricting to the kth block row, k ∈ [r], and the last block row of A2r+2

satisfies the hypothesis, i.e., any two distinct rows of this submatrix differ in at
least two entries. This is the case as restricting to its first, kth and last block
columns yields a 4× 6 submatrix of A6 if k ≥ 2, namely(

B2 B3 B1

B2 B2 B3

)
,

and a 4× 4 submatrix equal to A4 if k = 1.

4.5.2 Tensors of order three

In this subsection we show part (b) of Theorem 4.5.1, i.e., that γT (πm,3) and
γG(πm,3) are exponentially small in m. To do so, we set

Wm,3 :=
m⋃
s=2

{(s, 1, s), (s, s, 1), (s− 1, s, s)} ⊆ [m]× [m]× [m] (4.10)

and consider the corresponding subset

Γm,3 := ΓWm,3 =
{

(εi, εj, εk) | (i, j, k) ∈ Wm,3

}
⊆ Ω(πm,3). (4.11)

Let us first show that 0 /∈ conv(Γm,3) by proving the following statement.

Lemma 4.5.6 ([FR21, Lemma 2.8]). It holds that 0 /∈ aff(Γm,3).

Proof. For a proof by contradiction we assume 0 ∈ aff(Γm,3). Then there exist
as, bs, cs ∈ R for s = 2, 3, . . . ,m such that

∑
s(as + bs + cs) = 1 and

m∑
s=2

(
as(εs, ε1, εs) + bs(εs, εs, ε1) + cs(εs−1, εs, εs)

)
= (0m, 0m, 0m) ∈ (Rm)3.
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In each of the three Rm-components we obtain 0m as an affine linear combination
of ε1, . . . , εm. Applying Lemma 4.4.1 to the coefficient of εs−1 in the first com-
ponent, respectively to the coefficient of εs in the second and third component
yields

as−1 + bs−1 + cs = m−1 for s = 2, 3, . . . ,m (4.12)

respectively bs + cs = as + cs = m−1 for s = 2, 3, . . . ,m (4.13)

where we necessarily set a1 = b1 := 0. Equation (4.12) for s = 2 is c2 = m−1 and
hence a2 = b2 = 0 by (4.13) for s = 2. But now (4.12) for s = 3 gives c3 = m−1

and we can proceed inductively to conclude cs = m−1 and as = bs = 0 for all
s = 2, 3, . . . ,m. This gives the contradiction 1 =

∑m
s=2(as+ bs+ cs) = m−1

m
, so we

must have 0 /∈ aff(Γm,3). Another contradiction arises by applying Lemma 4.4.1
to the coefficient of εm in the first component, which yields am + bm = m−1.

Next, we prove an exponentially small upper bound on dist(0, conv(Γm,3)).
The key combinatorial idea, which is presented in the following lemma, is due to
[Kra07, Theorem 1 with k = 0].18 According to [Kra07] the special case k = 0 is
already contained in [KL05, Theorem 9].

Lemma 4.5.7 ([FR21, Lemma 2.5]). Let m ≥ 3 and set λi,j,k := 0 for all
(i, j, k) ∈ [m]3 \

(
Wm,3 ∪ {(1, 1, 1)}

)
. Moreover, define

λ1,1,1 := 2−m+1, λ1,2,2 := 1− 2−m+1, λm,1,m = λm,m,1 := 2−1

and for s = 2, 3, . . . ,m− 1

λs,1,s = λs,s,1 := 2−m+s−1, λs,s+1,s+1 := 1− 2−m+s .

Then the following equations hold:(
∀i ∈ [m] : λi,+,+ = 1

)
,
(
∀j ∈ [m] : λ+,j,+ = 1

)
,
(
∀k ∈ [m] : λ+,+,k = 1

)
. (4.14)

In particular, λ+,+,+ =
∑

i,j,k λi,j,k = m.

Proof. This is [Kra07, Theorem 1 with k = 0]. Alternatively, the statement can
be checked by straightforward computation as follows.

For i = 1, we have λ1,1,1 + λ1,2,2 = 1 and for i = m, λm,1,m + λm,m,1 = 1. If
i ∈ {2, 3, . . . ,m− 1}, then

λi,+,+ = λi,1,i + λi,i,1 + λi,i+1,i+1 = 2 · 2−m+i−1 + 1− 2−m+i = 1 .

18In [Kra07] Kravtsov extensively studies so-called complete r-noninteger vertices (r-CNVs)
of the three-index axial assignment polytope. For k ∈ {0, 1, . . . ,m − 2}, [Kra07, Theorem 1]
states explicitly a (3m − 2 − k)-CNV, among these we use the (3m − 2)-CNV (i.e., k = 0).
Moreover, [Kra07, Theorem 2] states that such r-CNVs of the three-index axial assignment
polytope actually only occur for r ∈ {2m, 2m + 1, . . . , 3m − 2}, and the later theorems in
[Kra07] fully characterize the r-CNVs and study their combinatorial properties.
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For the cases j = 2, j ∈ {3, 4, . . . ,m− 1} and j = m we compute, respectively,

λ+,2,+ = λ1,2,2 + λ2,2,1 = 1− 2−m+1 + 2−m+2−1 = 1

λ+,j,+ = λj,j,1 + λj−1,j,j = 2−m+j−1 + 1− 2−m+(j−1) = 1

λ+,m,+ = λm,m,1 + λm−1,m,m = 2−1 + 1− 2−m+(m−1) = 1 .

Finally, for j = 1 we get

λ1,1,1 +

(
m−1∑
s=2

λs,1,s

)
+ λm,1,m = 2−m+1 +

(
2−m+1 + . . .+ 2−2

)
+ 2−1 = 1 .

Note that by definition λi,j,k = λi,k,j for all i, j, k ∈ [m]. This ends the proof.

Example 4.5.8 ([FR21, Example 2.6]). To visualize the idea of Lemma 4.5.7 it
is helpful to consider the slices Λi given by (Λi)j,k = λi,j,k. For m = 4 one has

Λ1 =
1

8


1 0 0 0
0 7 0 0
0 0 0 0
0 0 0 0

 , Λ2 =
1

8


0 1 0 0
1 0 0 0
0 0 6 0
0 0 0 0

 ,

Λ3 =
1

8


0 0 2 0
0 0 0 0
2 0 0 0
0 0 0 4

 , Λ4 =
1

8


0 0 0 4
0 0 0 0
0 0 0 0
4 0 0 0


and for m = 5 one has

Λ1 =
1

16


1 0 0 0 0
0 15 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

 , Λ2 =
1

16


0 1 0 0 0
1 0 0 0 0
0 0 14 0 0
0 0 0 0 0
0 0 0 0 0

 ,

Λ3 =
1

16


0 0 2 0 0
0 0 0 0 0
2 0 0 0 0
0 0 0 12 0
0 0 0 0 0

 , Λ4 =
1

16


0 0 0 4 0
0 0 0 0 0
0 0 0 0 0
4 0 0 0 0
0 0 0 0 8

 , Λ5 =
1

16


0 0 0 0 8
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
8 0 0 0 0

 .

Indeed, we can see that summing over all entries of some Λi gives one. More-
over, summing over the entries of the jth row (respectively kth column) of all Λi

again yields one. ♦

Lemma 4.5.9 ([FR21, Lemma 2.7]). For m ≥ 3, dist
(
0, conv(Γm,3)

)
≤ 2−m+1.

Proof. Define λi,j,k ≥ 0 for all i, j, k ∈ [m] as in Lemma 4.5.7, which we can apply
as m ≥ 3. Since

∑m
i=1 εi = 0 (compare Equation (4.4)), Lemma 4.5.7 yields∑

i,j,k

λi,j,k(εi, εj, εk) =
∑
i,j,k

λi,j,k
(
(εi, 0m, 0m) + (0m, εj, 0m) + (0m, 0m, εk)

)
=
∑
i

λi,+,+(εi, 0m, 0m) +
∑
j

λ+,j,+(0m, εj, 0m) +
∑
k

λ+,+,k(0m, 0m, εk) = 03m.
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Equivalently, we have

−2−m+1(ε1, ε1, ε1) =
∑

(i,j,k)∈Wm,3

λi,j,k(εi, εj, εk).

Normalizing the latter equation we obtain

x := −c−1 2−m+1(ε1, ε1, ε1) ∈ conv(Γm,3), where c :=
∑

(i,j,k)∈Wm,3

λi,j,k .

Finally, ‖(ε1, ε1, ε1)‖ ≤
√

3, see (4.5), and c = m − 2−m+1 ≥
√

3 together imply
that ‖x‖ ≤ 2−m+1.

Combining Lemma 4.5.6 and Lemma 4.5.9 shows γT (πm,3) ≤ 2−m+1. To
conclude the same bound for the gap γG(πm,3) it remains to show that Γm,3
is free. For this, we use the characterization of freeness from Proposition 4.3.3.

Proposition 4.5.10 ([FR21, first part of Proposition 4.15]). For m ≥ 3 the set
Wm,3 ⊆ [m]3 is free, i.e., Γm,3 ⊆ Ω(πm,3) is free.

Proof. Recall from (4.10) that

Wm,3 =
{

(s, 1, s), (s, s, 1), (s− 1, s, s) | s = 2, 3, . . . ,m
}
.

Let x = (x1, x2, x3), y = (y1, y2, y3) ∈ Wm,3 be such that x 6= y. We prove by a
distinction of cases that x and y differ in at least two entries.

First, we assume x1 = y1. Then a := x1 = y1 ≥ 2, otherwise x = (1, 2, 2) = y
contradicts x 6= y. Thus x, y ∈ {(a, 1, a), (a, a, 1), (a, a+1, a+1)} and we conclude
that x and y differ in the second and third entry as a ≥ 2.

Second, we assume x1 6= y1. There is nothing to show if x2 6= y2, so we
additionally assume b := x2 = y2. If b = 1, then we are done by x = (x1, 1, x1)
and y = (y1, 1, y1). On the other hand, b ≥ 2 yields x, y ∈ {(b, b, 1), (b − 1, b, b)}
and as x 6= y, they differ in the first and third entry.

4.5.3 Tensors of higher order

In this subsection we part (c) of Theorem 4.5.1 by recycling the combinatorial
idea of Lemma 4.5.7. Let us give some intuition for our construction. The main
idea is to use the construction from the previous subsection for some multiple of
m, i.e., considering Wrm,3 for r ≥ 2:

Wrm,3 :=
rm⋃
s=2

{(s, 1, s), (s, s, 1), (s− 1, s, s)} ⊆ [rm]× [rm]× [rm] (4.15)

compare (4.10). Thereby, the main challenge is to ensure that the constructed
subset of Ω(πm,d) does not contain zero in its convex hull. We can try to extend
the elements of Ω(πm,3) to elements of Ω(πm,d). One natural idea is duplicate each
component d/3 times, i.e., when d = 6 the vector (εi, εj, εk) ∈ Ω(πm,3) becomes
(εi, εi, εj, εj, εk, εk) ∈ Ω(πm,6). However, we need a subset of Ω(πm,d) with rm
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many elements to imitate the construction from the previous subsection. We
still extend the elements of Ω(πm,3) in this way, but will additionally “shift” and
“twist” by some functions σ1, . . . , σ2r−1 : [rm]→ [m], so that the elements of our
set will look like(

εσ1(i), . . . , εσd/3(i), εσ1(j), . . . , εσd/3(j), εσ1(k), . . . , εσd/3(k)

)
for d/3 = 2r−1 and (i, j, k) ∈ Wrm,3. We now define the functions σk. For this, let
m ≥ 3 and fix a natural number r ≥ 2. It is convenient to use an adjusted modulo
m function mod′ m that takes values in [m], i.e., instead of zero it outputs m.
For i ∈ [r] we consider

σi : [rm]→ [m], j 7→
⌈
j + (i− 1)

r

⌉
mod′ m

σr+i := σ1 ◦ (r − i+ 1 r + 1): [rm]→ [m]

where (r− i+1 r+1) denotes the corresponding transposition in the symmetric
group of [rm].19 We only need the first 2r − 1 of these functions and combine
them to obtain

σ : [rm]→ [m]2r−1, j 7→
(
σ1(j), σ2(j), . . . , σ2r−1(j)

)
.

Example 4.5.11 ([FR21, Example 2.9]). For r = 3 the functions σ1, σ2, . . . , σ6

are sketched by the following table.

j 1 2 3 4 5 6 · · · 3m− 4 3m− 3 3m− 2 3m− 1 3m

σ1 1 1 1 2 2 2 · · · m− 1 m− 1 m m m
σ2 1 1 2 2 2 3 · · · m− 1 m m m 1
σ3 1 2 2 2 3 3 · · · m m m 1 1

σ4 1 1 2 1 2 2 · · · m− 1 m− 1 m m m
σ5 1 2 1 1 2 2 · · · m− 1 m− 1 m m m
σ6 2 1 1 1 2 2 · · · m− 1 m− 1 m m m

For r = 3 and m = 5 the functions σ1, σ2, . . . , σ6 are given by the following table.

j 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

σ1 1 1 1 2 2 2 3 3 3 4 4 4 5 5 5
σ2 1 1 2 2 2 3 3 3 4 4 4 5 5 5 1
σ3 1 2 2 2 3 3 3 4 4 4 5 5 5 1 1

σ4 1 1 2 1 2 2 3 3 3 4 4 4 5 5 5
σ5 1 2 1 1 2 2 3 3 3 4 4 4 5 5 5
σ6 2 1 1 1 2 2 3 3 3 4 4 4 5 5 5

Remark 4.5.12 ([FR21, Remark 2.10]). By construction, each element of [m] is
attained exactly r-times by σk, k ∈ [2r−1]. Moreover, the definition of σ1, . . . , σr
yields that σ is injective. O

19We stress that we always take σ1 (and not σi) to define σr+i.
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For i, j, k ∈ [rm] we introduce the short-hand

εσ(i) :=
(
εσ1(i), εσ2(i), . . . , εσ2r−1(i)

)
∈ (Rm)2r−1

εσ(i),σ(j),σ(k) :=
(
εσ(i), εσ(j), εσ(k)

)
∈ (Rm)6r−3 .

We set

Jr :=
{

(s, 1, s), (s, s, 1) | s = 2, 3, . . . , r
}
⊆ Z3 ,

which we remove from Wrm,3, see (4.15), to obtain.

Wrm,3\Jr =

(
r⋃
s=2

{(s− 1, s, s)}

)
∪

rm⋃
s=r+1

{(s, 1, s), (s, s, 1), (s− 1, s, s)} (4.16)

In the following we show that the convex hull of the corresponding set of weights

Γm,6r−3 :=
{
εσ(i),σ(j),σ(k) | (i, j, k) ∈ Wrm,3\Jr

}
⊆ Ω(πm,6r−3) ⊆

(
Rm
)6r−3

does not contain the zero vector, but is very close to it.20 But first, we prove
freeness of Γm,6r−3, which is a direct consequence of its construction.

Proposition 4.5.13 ([FR21, second part of Proposition 4.15]). For m ≥ 3 and
r ≥ 2 the set of weights Γm,6r−3 ⊆ Ω(πm,6r−3) is free.

Proof. We use the characterization of freeness from Proposition 4.3.3. The above
definition of Γm,6r−3 shows that it equals ΓWm,6r−3 , where

Wm,6r−3 :=
{(
σ(i), σ(j), σ(k)

)
| (i, j, k) ∈ Wrm,3\Jr

}
⊆ [m]6r−3 .

By Proposition 4.5.10, Wrm,3 is free and so is its subset Wrm,3\Jr. Now, consider
(i, j, k), (i′, j′, k′) ∈ Wrm,3\Jr such that (σ(i), σ(j), σ(k)) 6= (σ(i′), σ(j′), σ(k′)).
We necessarily have (i, j, k) 6= (i′, j′, k′), hence they differ in at least two entries as
Wrm,3\Jr is free. Since σ is injective, also (σ(i), σ(j), σ(k)) and (σ(i′), σ(j′), σ(k′))
differ in at least two entries. Therefore, Wm,6r−3 is free and so is Γm,6r−3.

Thus, Γm,6r−3 may also serve as a witness set for upper bounding the gap,
by Proposition 4.3.7(ii). However, we need to ensure 0 /∈ conv (Γm,6r−3), which
indeed holds due to the following.

Lemma 4.5.14 ([FR21, Lemma 2.11]). For m ≥ 3 and r ≥ 2 it holds that
0 /∈ aff (Γm,6r−3).

We defer the proof to the end of this subsection, as it is very technical. Instead,
we first give a lower bound on the distance from zero to the convex hull of Γm,6r−3.

20One could suggest to consider the set {εσ(i),σ(j),σ(k) | (i, j, k) ∈ Wrm,3}, but this won’t
ensure that zero is not in the convex hull. The intuition behind is, that Γm,3 from the last
subsection is “nearly at the limit”, i.e., 0 /∈ conv(Γm,3) but 0 ∈ conv(Γm,3 ∪ {(ε1, ε1, ε1)}).
Now the function σ “introduces 2r − 2 additional linear relations”, since εσ(i) ∈ (1⊥m)2r−1 and
the orthogonal complement 1⊥m ⊆ Rm has codimension one while (1⊥m)2r−1 ⊆ (Rm)2r−1 has
codimension 2r − 1. Thus, it is plausible to remove 2r − 2 many elements from Wrm,3.
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Lemma 4.5.15 ([FR21, Lemma 2.12]). Let m ≥ 3 and r ≥ 2. Then

dist
(
0, conv(Γm,6r−3)

)
≤

√
6

(m− 1)
√
r

2−r(m−1)+1 ≤ 2−r(m−1)+1.

Proof. We set N := rm and for i, j, k ∈ [N ] we define λi,j,k as in Lemma 4.5.7
applied for the dimension N . Then Equation (4.14) of Lemma 4.5.7 yields

N∑
i,j,k=1

λi,j,k
(
εσ(i), εσ(j), εσ(k)

)
=

N∑
i,j,k=1

λi,j,k
(
εσ(i), 0, 0

)
+

N∑
i,j,k=1

λi,j,k
(
0, εσ(j), 0

)
+

N∑
i,j,k=1

λi,j,k
(
0, 0, εσ(k)

)
=

N∑
i=1

(
εσ(i), 0, 0

)
+

N∑
j=1

(
0, εσ(j), 0

)
+

N∑
k=1

(
0, 0, εσ(k)

)
=

N∑
i=1

εσ(i),σ(i),σ(i) = 0,

where we used in the last step Equation (4.4) and Remark 4.5.12, i.e., that each
element of [m] is attained exactly r-many times by all σk : [rm]→ [m], k ∈ [2r−1].
Because WN,3 contains the support of λ apart from the element (1, 1, 1), we have

x := −λ1,1,1 εσ(1),σ(1),σ(1) −
∑

(i,j,k)∈Jr

λi,j,k εσ(i),σ(j),σ(k)

=
∑

(i,j,k)∈WN,3\Jr

λi,j,k εσ(i),σ(j),σ(k).
(4.17)

We see that the positive cone of Γm,6r−3 = {εσ(i),σ(j),σ(k) | (i, j, k) ∈ WN,3 \Jr}
contains x. Normalizing the latter equation with

c :=
∑

(i,j,k)∈WN,3\Jr

λi,j,k =
N∑

i,j,k=1

λi,j,k −

λ1,1,1 +
∑

(i,j,k)∈Jr

λi,j,k

 ≥ N − 1

shows c−1x ∈ conv(Γm,6r−3). To bound the norm of c−1x we compute

λ1,1,1 +
∑

(i,j,k)∈Jr

λi,j,k = 2−N+1 +
r∑
s=2

(λs,1,s + λs,s,1)

= 2−N+1 +
r∑
s=2

(
2 · 2−N+s−1

)
=

r∑
s=1

2−N+s < 2−N+r+1.

Finally, using ‖εσ(i),σ(j),σ(k)‖ ≤
√

6r − 3 (see Equation (4.5)) together with the
triangle inequality on Equation (4.17) implies

‖c−1x‖ ≤
√

6r − 3

N − 1
2−N+r+1 ≤

√
6

(m− 1)
√
r

2−N+r+1 ≤ 2−N+r+1 = 2−r(m−1)+1,

where we used m ≥ 3 and r ≥ 2 for
√

6 ≤ (m− 1)
√
r.
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From Proposition 4.5.13, Lemma 4.5.14 and Lemma 4.5.15 we can deduce
Theorem 4.5.1(c). Still, we are left to show Lemma 4.5.14. First, we present a
proof for the special case r = 3, in which all main ideas of the general proof become
apparent and visible. The proof for the general statement is given afterwards and
certainly looks technical at a first encounter. Therefore, it is recommended to
read the proof for r = 3 first. Afterwards, while reading the general proof it may
be helpful to compare it in parallel with the proof of the special case.

Proof of Lemma 4.5.14 for r = 3. Recall the construction of Γm,15 via the set
W3m,3\J3, see (4.16) and below. Assume 0 ∈ aff(Γm,15) for a proof by con-
tradiction. Then there are coefficients as, bs, cs ∈ R, where 2 ≤ s ≤ 3m, such that
a2 = a3 = b2 = b3 = 0 (due to removing J3 from W3m,3),

∑
s(as + bs + cs) = 1

and
3m∑
s=2

(
as εσ(s),σ(1),σ(s) + bs εσ(s),σ(s),σ(1) + cs εσ(s−1),σ(s),σ(s)

)
= 0 ∈ (Rm)15. (4.18)

The bulk of our work will consist of proving the equations

b2 + c2 = b3 + c3 = . . . = b3m + c3m (4.19)
a2 + c2 = a3 + c3 = . . . = a3m + c3m. (4.20)

From here we will derive a contradiction. We now set about proving (4.19) and
(4.20). Rewrite the left-hand-side of (4.18) as the collection for k ∈ [5] of the
following affine linear combinations of ε1, . . . , εm in Rm:

3m∑
s=2

(
as εσk(s) + bs εσk(s) + cs εσk(s−1)

)
= 0 (4.21)

3m∑
s=2

(
as εσk(1) + bs εσk(s) + cs εσk(s)

)
= 0 (4.22)

3m∑
s=2

(
as εσk(s) + bs εσk(1) + cs εσk(s)

)
= 0. (4.23)

If we expand each expression as an affine linear combination of the εl, then by
Lemma 4.4.1 the coefficient of εl must be m−1 for all l ∈ [m]. Translating this for
Equation (4.21) with k = 2, l = 2, . . . ,m and using Example 4.5.11 we obtain

(ap−3 + ap−2 + ap−1) + (bp−3 + bp−2 + bp−1) + (cp−2 + cp−1 + cp) =
1

m
(4.24)

for p = 6, 9, 12, . . . , 3m (e.g., l = 2 yields (4.24) with p = 6). A similar calculation
for k = 1, 3 and l = 2, . . . ,m shows (4.24) holds for all 5 ≤ p ≤ 3m+ 1, where we
set c3m+1 := 0.

Similarly for (4.22) with l = 2, . . . ,m and k = 1, 2, 3 we obtain for 4 ≤ p ≤ 3m
that

(bp−2 + cp−2) + (bp−1 + cp−1) + (bp + cp) =
1

m
(4.25)
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and the same equations with “b” replaced by “a” when considering (4.23).
In the following we prove (4.19). Subtracting (4.25) from itself with values of

p differing by one, we deduce that

b2 + c2 = b5 + c5 = . . . = b3m−1 + c3m−1

b3 + c3 = b6 + c6 = . . . = b3m + c3m,

and b4 + c4 = b7 + c7 = . . . = b3m−2 + c3m−2.

Next we deduce (4.19) by showing b2 + c2 = b3 + c3 = b4 + c4.
To do so, we apply Lemma 4.4.1 to (4.22) for the coefficient of ε2 using Ex-

ample 4.5.11, which yields for k = 4, 5 the equations

(b3 + c3) + (b5 + c5) + (b6 + c6) =
1

m
(4.26)

(b2 + c2) + (b5 + c5) + (b6 + c6) =
1

m
(4.27)

respectively. Subtracting the two shows b2 + c2 = b3 + c3, and we have b3 + c3 =
b4 + c4 via subtracting (4.26) from (4.25) for p = 6. This completes the proof of
(4.19); using (4.23) we similarly deduce (4.20).

To get a contradiction we show that as = bs = cs = 0 for all s = 2, 3, . . . , 3m.
For this, we set a :=

∑
s as and b :=

∑
s bs, and recall that a2 = a3 = b2 = b3 = 0.

This time we use Lemma 4.4.1 applied to the coefficient of ε1 in (4.21), in (4.22)
and in (4.23) respectively for k = 1 to get

c2 + c3 + c4 =
1

m
, a+ c2 + c3 =

1

m
and b+ c2 + c3 =

1

m
(4.28)

respectively. We deduce from these three equations that a = b = c4. Furthermore,
b2 = b3 = 0 shows that (4.25) for p = 4 is b4 + (c2 + c3 + c4) = m−1. Subtracting
from the latter the left-hand equation in (4.28) yields b4 = 0. Similarly, a4 = 0
follows from a2 = a3 = 0 and the analogous equation of (4.25) with a’s replaced
by b’s.

Now, (4.24) for p = 5 simplifies to c3+c4+c5 = m−1. Thus, c2 = c5 with (4.28)
and therefore a5 = b5 = 0 by (4.19), (4.20) and a2 = b2 = 0. This simplifies (4.24)
for p = 6 to c4 + c5 + c6 = m−1. Hence, c3 = c6 as we also have c3 + c4 + c5 = m−1

and we get via (4.19) and (4.20) that a6 = b6 = 0. The latter in turn shows that
(4.24) for p = 7 becomes c5 + c6 + c7 = m−1, so c4 = c7 and a7 = b7 = 0 by, again,
(4.19) and (4.20).

It should have become apparent that we can proceed inductively in the same
manner with (4.24) for p = 5, . . . , 3m + 1; thereby using (4.19) and (4.20) to
deduce as = bs = 0 for all s = 2, 3, . . . , 3m. In particular, a = b = c4 = 0.
Finally, (4.19) implies c4 = cs for all s = 2, 3, . . . , 3m, which gives the desired
contradiction.

Proof of Lemma 4.5.14 for arbitrary r. Recall the construction of Γm,6r−3 via the
set Wrm,3\Jr, see (4.16) and below. For the sake of contradiction assume that
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0 ∈ aff(Γm,6r−3). Then there are coefficients as, bs, cs ∈ R, where 2 ≤ s ≤ rm,
such that a2 = . . . = ar = b2 = . . . = br = 0,

∑
s(as + bs + cs) = 1 and

rm∑
s=2

(
as εσ(s),σ(1),σ(s) + bs εσ(s),σ(s),σ(1) + cs εσ(s−1),σ(s),σ(s)

)
= 0 ∈ (Rm)6r−3. (4.29)

The bulk of our work will consist of proving the equations

b2 + c2 = b3 + c3 = . . . = brm + crm (4.30)
a2 + c2 = a3 + c3 = . . . = arm + crm. (4.31)

From here we will derive a contradiction. We now set about proving (4.31) and
(4.30). Rewrite the left-hand-side of (4.29) as the collection for k ∈ [2r − 1] of
the following affine linear combinations of ε1, . . . , εm in Rm:

rm∑
s=2

(
as εσk(s) + bs εσk(s) + cs εσk(s−1)

)
= 0 (4.32)

rm∑
s=2

(
as εσk(1) + bs εσk(s) + cs εσk(s)

)
= 0 (4.33)

rm∑
s=2

(
as εσk(s) + bs εσk(1) + cs εσk(s)

)
= 0. (4.34)

If we expand this expressions as affine linear combinations of the εl, then by
Lemma 4.4.1 the coefficient of εl must be m−1 for all l ∈ [m]. Translating this for
Equations (4.32), (4.33) and (4.34) respectively with 2 ≤ l ≤ m and k ∈ [r], and
using for j ∈ [r] that

σk
(
r(l − 1) + j − k + 1

)
=

⌈
(r(l − 1) + j − k + 1) + (k − 1)

r

⌉
= l (4.35)

we get for all k ∈ [r], l ∈ {2, 3, . . . ,m} that

r∑
j=1

(
ar(l−1)+j−k+1 + br(l−1)+j−k+1 + cr(l−1)+j−k+2

)
=

1

m
(4.36)

r∑
j=1

(
br(l−1)+j−k+1 + cr(l−1)+j−k+1

)
=

1

m
(4.37)

r∑
j=1

(
ar(l−1)+j−k+1 + cr(l−1)+j−k+1

)
=

1

m
(4.38)

respectively, where we set crm+1 := 0. Fixing some l ≥ 2 and subtracting (4.37)
with k = 1 from (4.37) for k = 2, we find a telescoping sum that reduces to
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br(l−1) + cr(l−1) = brl + crl. Indeed, subtracting the two yields

0 =
r∑
j=1

(
br(l−1)+j−1 + cr(l−1)+j−1

)
−

r∑
j=1

(
br(l−1)+j + cr(l−1)+j

)
=

r−1∑
j=0

(
br(l−1)+j + cr(l−1)+j

)
−

r∑
j=1

(
br(l−1)+j + cr(l−1)+j

)
= (br(l−1) + cr(l−1))− (brl + crl).

More generally, for k ∈ [r − 1] combining (4.37) for k and k ← k + 1, implies
brl−k+1 + crl−k+1 = br(l−1)−k+1 + cr(l−1)−k+1 for all l = 2, . . . ,m, i.e. for every
k ∈ [r − 1] we have

cr−k+1 = br−k+1 + cr−k+1 = b2r−k+1 + c2r−k+1 = . . . = brm−k+1 + crm−k+1. (4.39)

We are still missing the value k = 0, i.e., the equations

br+1 + cr+1 = b2r+1 + c2r+1 = . . . = br(m−1)+1 + cr(m−1)+1. (4.40)

We obtain this by subtracting, for l = 2, . . . ,m, (4.37) for k = 1 and l from (4.37)
with k = r and l← l + 1 . Indeed,

0 =
r∑
j=1

(
brl+j−r+1 + crl+j−r+1

)
−

r∑
j=1

(
br(l−1)+j + cr(l−1)+j

)
=

r+1∑
j=2

(
br(l−1)+j + cr(l−1)+j

)
−

r∑
j=1

(
br(l−1)+j + cr(l−1)+j

)
=
(
brl+1 + crl+1

)
−
(
br(l−1)+1 + cr(l−1)+1

)
.

Lastly, we are missing the equations b2 + c2 = b3 + c3 = . . . = br+1 + cr+1 for
(4.30). We have not yet used in (4.33) the values k = r + p with p ∈ [r − 1]. For
this we note that

σr+p
(
j
)

= 2 for j ∈ {r − p+ 1} ∪ {r + 2, r + 3, . . . , 2r}.

We use this equation to apply Lemma 4.4.1 to (4.33) for ε2 and k = r + p with
p ∈ [r − 1] to obtain

br−p+1 + cr−p+1 +
r∑
j=2

(
br+j + cr+j

)
=

1

m
.

We need one more equation to eliminate the right-hand term, so we use the
following. Lemma 4.4.1 applied to Equation (4.37) for k = 1 and l = 2 yields

r∑
j=1

(
br+j + cr+j

)
=

1

m
.
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Subtracting this equation from the previous one yields, br−p+1 + cr−p+1 = br+1 +
cr+1 for all p = 1, . . . , r − 1. Together with the Equations (4.39) and (4.40) we
conclude (4.30). Analogously, (4.34) and (4.38) can be used to obtain (4.31).

To get a contradiction we show that as = bs = cs = 0 for all s = 2, 3, . . . , rm.
For this, we set a :=

∑
s as and b :=

∑
s bs. Equation (4.35) still applies for

l = 1, k = 1, so Lemma 4.4.1 applied to the coefficient of ε1 in (4.32), in (4.33)
and in (4.34) respectively for k = 1 gives

r∑
j=1

cj+1 =
1

m
, a+

r−1∑
j=1

cj+1 =
1

m
and b+

r−1∑
j=1

cj+1 =
1

m

respectively. Subtracting the second equation from the first gives a = cr+1, and
reasoning analogously for the third yields a = b = cr+1. Moreover, (4.37) with
k = r and l = 2 is

∑r
j=1(bj+1 + cj+1) = m−1. Using the latter together with

b2 = . . . = br = 0 and
∑r

j=1 cj+1 = m−1 yields br+1 = 0 and similarly ar+1 = 0
via (4.38) with k = r and l = 2.

Since now also ar+1 = br+1 = 0, the Equation (4.36) with k = r and l = 2
simplifies to

∑r
j=1 cj+2 = m−1. In conjunction with

∑r
j=1 cj+1 = m−1 we deduce

c2 = cr+2 and hence br+2 = 0 = ar+2 by (4.30) and (4.31). But now (4.36) with
k = r − 1 and l = 2 is

∑r
j=1 cj+3 = m−1 and together with

∑r
j=1 cj+2 = m−1 we

get c3 = cr+3. Continuing inductively we obtain

∀ j ∈ [r] : cj+1 = cr+j+1 and ar+j+1 = br+j+1 = 0

via (4.36) with l = 2, k ∈ [r] and via (4.30), (4.31). Then (4.36) with k = r and
l = 3 simplifies to

∑r
j=1 cr+j+2 = m−1 and together with m−1 =

∑r
j=1 cj+1 =∑r

j=1 cr+j+1 we have cr+2 = c2r+2. Hence, b2r+2 = 0 = a2r+2 via (4.30) respec-
tively (4.31). Continuing inductively in the outlined manner with Equation (4.36)
for k ∈ [r], l = 3, . . . ,m and with the Equations (4.30) and (4.31) we conclude
as = bs = 0 for all s = 2, 3 . . . , rm, so a = b = 0. Finally, (4.30) implies cr+1 = cs
for all s = 2, . . . , rm, but cr+1 = b = 0 giving the desired contradiction.

4.5.4 Padding of tensor factors

Theorem 4.5.1 only gives bounds on γT (πm,d) and γG(πm,d) for certain sub-families
of {(m, d) | m ≥ 2, d ≥ 3}. Still, we can deduce Theorem 4.2.1, which gives
a bound for all m ≥ 2 and all d ≥ 3, via some padding on the number of
tensor factors d. That padding is provided in this subsection and used to prove
Theorem 4.2.1. Recall that Ω(πm,d) = {εi | i ∈ [m]}d ⊆ (Rm)d.

Proposition 4.5.16 ([FR21, Proposition C.1]). Let m, d ≥ 1. Consider a set
of weights Γm,d ⊆ Ω(πm,d) such that 0 /∈ conv(Γm,d), i.e., Γm,d witnesses the
inequality γT (πm,d) ≤ dist(0, conv(Γm,d)).

(i) Then γT (πm,d+1) ≤ dist
(
0, conv(Γm,d)

)
. Thus, γT (πm,d+1) ≤ γT (πm,d).

(ii) If Γm,d is free, then γG(πm,d+r) ≤ dist
(
0, conv(Γm,d)

)
for all r ≥ 2.
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Proof. To prove the statement we set for r ≥ 1

Υr :=
{

(εi, . . . , εi) | i ∈ [m]
}
⊆ (Rm)r and Γm,d+r := Γm,d ×Υr ⊆ Ω(πm,d+r).

By Equation (4.4) we have 0 ∈ conv(Υr) and therefore

conv(Γm,d+r) = conv(Γm,d)× conv(Υr) ⊇ conv(Γm,d)× {0}.

The latter implies

dist
(
0, conv(Γm,d+r)

)
≤ dist

(
0, conv(Γm,d)

)
. (4.41)

Since conv(Γm,d+r) = conv(Γm,d) × conv(Υr), the assumption 0 /∈ conv(Γm,d)
yields 0 /∈ conv(Γm,d+r). The latter shows γT (πm,d+1) ≤ dist

(
0, conv(Γm,d+1)

)
for

r = 1 and we conclude the desired inequality with (4.41). Taking the minimum
over all Γm,d ⊆ Ω(πm,d) with 0 /∈ conv(Γm,d) shows that γT (πm,d+1) ≤ γT (πm,d).

Assume in addition that Γm,d is free and let r ≥ 2. Considering Definition 4.3.2
and Proposition 4.3.3 we prove that also Γm,d+r is free. For this, let W ⊆ [m]d

be such that ΓW = Γm,d and consider (x, i, . . . , i), (y, j, . . . , j) ∈ W × [m]r with
(x, i, . . . , i) 6= (y, j, . . . , j). If x 6= y, then x and y differ in at least two components
by freeness of W . If x = y, then we have i 6= j and so (x, i, . . . , i) and (y, j, . . . , j)
differ in at least two components using r ≥ 2. This shows that Γm,d+r is free
for r ≥ 2. Since also 0 /∈ conv(Γm,d+r) we obtain with Proposition 4.3.7(ii) that
γG(πm,d+r) ≤ dist

(
0, conv(Γm,d+r)

)
holds for all r ≥ 2. Finally, we deduce the

second statement using Equation (4.41).

The preceding proposition allows to pad the results from Theorem 4.5.1 to
almost all tuples (m, d). Since Proposition 4.5.16(ii) requires a step length of at
least two, the case m ≥ 3 and d = 4 is missing for the gap γG(πm,d).21

Proposition 4.5.17 ([FR21, Proposition C.2]). For all m ≥ 3 it holds that
γT (πm,4) ≤ γG(πm,4) ≤ 2−m+1.

Proof. This result can be obtained by imitating the proof of Theorem 4.5.1(b) in
Subsection 4.5.2. Defining

Γm,4 :=
{

(εi, εj, εk, εi) | (i, j, k) ∈ Wm,3

}
⊆ Ω(πm,4).

we have 0 /∈ conv(Γm,4) as 0 /∈ conv(Γm,3) by Lemma 4.5.6. Moreover, one can
show with Lemma 4.5.7 (similar to the proof of Lemma 4.5.9) that

x := − 1

c 2m−1
(ε1, ε1, ε1, ε1) ∈ conv(Γm,4), where c = m− 2−m+1 ≥ 2.

Thus, ‖(ε1, ε1, ε1, ε1)‖ ≤
√

4 implies ‖x‖ ≤ c−12−m+1
√

4 ≤ 2−m+1. This proves
γT (πm,4) ≤ 2−m+1.

Since Wm,3 is free by Proposition 4.5.10, the set {(i, j, k, i) | (i, j, k) ∈ Wm,3}
is free. Hence, γG(πm,4) ≤ 2−m+1 by Proposition 4.3.3 and Proposition 4.3.7.

21Given the fact γT (πm,d+1) ≤ γT (πm,d), it is natural to ask whether the same inequality
holds for the gap. This would lead to a more natural argument than the one presented here.
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Using Propositions 4.5.16 and 4.5.17 we can deduce Theorem 4.2.1 from The-
orem 4.5.1. We provide a proof to justify that the constant C = 1/16 always
works, compare Remark 4.2.2.

Proof of Theorem 4.2.1. First, note that all upper bounds in Theorem 4.5.1 in-
volve a negative exponent. Even for m = 2 and d = 3 we have γG(π2,3) ≤ 2−1/2,
see Theorem 4.5.1(a). Moreover, note that thanks to Theorem 4.5.1(c) we need
to pad at most seven tensor factors22 to apply a bound from Theorem 4.5.1.
Consequently, Propositions 4.5.16 and 4.5.17 show that a constant C > 0 with

∀m ≥ 2, d ≥ 3: γG(πm,d) ≤ 2−Cmd (4.42)

exists. Moreover, as d grows the impact of the padding becomes smaller, and
hence for d,m� 0 we can choose C ≈ 1/6 by Theorem 4.5.1(c).

By the above arguments, it suffices to show for small d and m (and biggest
necessary padding step) that C := 1/16 satisfies Eq. (4.42). First, if m = 2 then

−d
2

+ 1 ≤ −Cmd = −2d

16
⇔ −3d

8
≤ −1

and the latter holds for all d ≥ 3. Together with Theorem 4.5.1(a) this settles
the case m = 2 and d ≥ 3. The largest padding step when applying the bound
from Theorem 4.5.1(b) arises for d = 10. In this case

−m+ 1 ≤ −Cmd = −10m

16
⇔ −3m

8
≤ −1

and the inequality is satisfied for all m ≥ 3. For d < 10 the required lower bound
on m gets smaller. Finally, we consider the largest padding step and smallest d
when Theorem 4.5.1(c) is applied. This is the case for d = 16 and we use the
bound with r = 2. We have

−2m+ 3 = −r(m− 1) + 1 ≤ −Cmd = −16

16
m ⇔ −m ≤ −3

which is equivalent to m ≥ 3. This ends the proof.

4.6 Polynomial Scaling

In this subsection we transfer the bounds on weight margin and gap from d-
tensors to bounds on polynomial scaling. For this, let C[x1, . . . , xn]d denote the
C-vector space of homogeneous polynomials of degree d in n variables (including
zero). Polynomial Scaling is given by the natural SLn(C) action on C[x1, . . . , xn]d.
The corresponding representation23 is

%n,d : SLn(C)→ GL
(
C[x1, . . . , xn]d

)
, g 7→

(
p(x) 7→ p(g−1x)

)
.

22For example, note that we cannot apply the bound from Theorem 4.5.1(c) for d = 10 since
Proposition 4.5.16 requires a padding step of at least two for the gap. Hence, we have to use
the bound for d = 3, Theorem 4.5.1(b), and have to pad seven factors.

23We note the following, even though we do not explicitly need it here. To ensure K = SUm

invariance of the inner product under the action of %n,d, one has to equip C[x1, . . . , xn]d with
the Bombieri-Weyl inner product, see e.g., [BC13, Section 16.1]
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We remark that applications of polynomial scaling and related literature are
discussed in Section 4.2.

Each monomial xα = xα1
1 · · ·xαnn , where α = (α1, . . . , αn) ∈ (Z≥0)n is a multi-

index with |α| :=
∑

i αi = d, is a weight vector of %n,d with weight −α + d
n
1n.

Therefore,

Ω(%n,d) =

{
−α +

d

n
1n

∣∣∣∣ α ∈ (Z≥0)n with |α| = d

}
as the monomials of degree d span C[x1, . . . , xn]d.

We transfer the bounds for πm,d to %n,d by relating their set of weights as
follows. If n = dm for some integer m ≥ 1 and i ∈ [m], then εi = ei − 1

m
1m =

ei − d
n
1m. Hence, for any i1, . . . , id ∈ [m] we have

−
(
εi1 , . . . , εid

)
= −

(
ei1 , . . . eid

)
+
d

n

(
1m, . . . ,1m

)
= −

(
ei1 , . . . , eid

)
+
d

n
1dm,

which shows −Ω(πm,d) ⊆ Ω(%n,d). Thus, we can transfer bounds on γSTm(C)d(πm,d)
to bounds on γSTn(C)(%n,d). The next statement ensures the same for the gap.

Proposition 4.6.1 ([FR21, Proposition 4.16]). Let Γ ⊆ Ω(πm,d) and n = dm for
some integer m ≥ 1. If Γ ⊆ Ω(πm,d) is free, then −Γ ⊆ Ω(%n,d) is free.

Proof. We prove the statement by contraposition. Assume that −Γ ⊆ Ω(%n,d) is
not free. Then there exists a root α = ei − ej ∈ Rn of SLn(C), where i, j ∈ [n]
with i 6= j, and two distinct weights ω, ω′ ∈ −Γ such that ω = ω′ + ei − ej,
equivalently, −ω = −ω′ − ei + ej. The latter enforces −α to be of the form

(0m, . . . , 0m, ek − el, 0m, . . . , 0m) ∈ (Rm)d ∼= Rn for some k, l ∈ [m] with k 6= l,

because −ω,−ω′ ∈ Ω(πm,d) = {(εi1 , . . . , εid) | i1, . . . , id ∈ [m]}. Thus, −α is a
root of SLm(C)d and hence Γ ⊆ Ω(πm,d) is not free.

As a consequence we obtain bounds for the gap of polynomial scaling.

Theorem 4.6.2 (Gap for Polynomial Scaling, [FR21, Theorem 4.17]).
Let d ≥ 3 and let n = dm for some integer m ≥ 2. Set G := SLn(C) and
T := STn(C). Then there exists a constant C > 0, independent of n and d, with

γT (%n,d) ≤ γG(%n,d) ≤ 2−Cdm = 2−Cn.

More concretely, for d = 3 and m ≥ 3 it holds that

γT (%n,3) ≤ γG(%n,3) ≤ 2−m+1 = 2−
n
3

+1,

and if m ≥ 3 and d = 6r − 3 for some r ≥ 2, we have

γT (%n,6r−3) ≤ γG(%n,6r−3) ≤ 2−r(m−1)+1 = 2−
(d+3)(m−1)

6
+1 ≈ 2−

n
6 .
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Proof. First, remember that γT (%n,d) ≤ γG(%n,d), by Proposition 4.1.4. Further-
more, we recall that Theorem 4.2.1 was proven by padding the results from The-
orem 4.5.1. Thus, the bound γSLm(C)d(πm,d) ≤ 2−Cdm for each m ≥ 2 and d ≥ 3
from Theorem 4.2.1 is witnessed by a free set of weights Γm,d ⊆ Ω(πm,d), i.e.,
0 < dist(0, conv(Γm,d)) ≤ 2−Cdm. But then we also have 0 /∈ conv(−Γm,d), and
that −Γm,d ⊆ Ω(%n,d) is free by Proposition 4.6.1. Therefore,

γG(%n,d) ≤ dist
(
0, conv(−Γm,d)

)
= dist

(
0, conv(Γm,d)

)
≤ 2−Cdm.

by Proposition 4.3.7. Applying to the latter equation the inequalities from
Lemma 4.5.9 respectively Lemma 4.5.15 yields the other two inequalities.

4.7 Action on a Family of Quivers

In this section we study a certain family of quivers and its corresponding SL-
action. For GL-actions on quivers the weight margin (and hence the gap) are
large, i.e., inverse polynomial in the number of vertices and the entries of the
dimension vector, compare [BFG+19, Theorem 6.21 Item 2]. Therefore, the
algorithms in [BFG+19] solve NCM in polynomial time. In the case of SL-
actions [BFG+19, Theorem 6.21 Item 4] provides a lower bound on the weight
margin, which is exponentially small in the number of vertices. We show that
this general lower bound can essentially not be improved: the SL-weight margin
for our family of quivers is exponentially small in the number of vertices, see
Theorem 4.7.1. Interestingly, its gap is still large as we state in Theorem 4.7.6 –
a result due to Cole Franks and Visu Makam.

4.7.1 Upper Bounds on Weight Margin and Gap

For d ≥ 2 let Qd be the quiver

1 2 3 d− 2 d− 1 d if d even

1 2 3 d− 2 d− 1 d if d odd

and let Q(k)
d be the quiver one obtains from Qd by adding k− 1 additional copies

of each arrow in Qd. Then G = SLm(C)d (and T = STm(C)d) act on the quiver
Qd with dimension vector (m, . . . ,m) as described in Example 1.3.8. We denote
the corresponding representation by

τm,d : SLm(C)d → GL
(
(Cm×m)d−1

)
.

Note that the action of G on Q(k)
d with dimension vector (m, . . . ,m) is given by

τ⊕km,d. In this subsection we prove an upper bound on the weight margin of τm,d
and on the gap of τ⊕mm,d . The bound on γG(τ⊕mm,d ) is thanks to the refinement in
Proposition 4.3.7 pointed out by Visu Makam.

Theorem 4.7.1 ([FR21, Theorem 4.25]). Let m, d ≥ 2. It holds that

γT (τm,d) ≤ (m− 1)−d+1 and γG(τ⊕mm,d ) ≤ (m− 1)−d+1.
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Remark 4.7.2 ([FR21, Remark 4.26]). Before proving the theorem, we point out
a few consequences.

1. Theorem 4.7.1 shows that γT (τm,d)
−1 and γG(τ⊕mm,d )−1 are not polynomially

bounded in dim(Cm×m)d−1 = (d − 1)m2 and dim SLm(C)d = d(m2 − 1).
Instead we see for fixed m and d → ∞ an exponential behaviour in the
number of vertices d. Thus, our bound shows that the exponential be-
haviour in d cannot be avoided in general lower bounds for quiver actions
like [BFG+19, Theorem 6.21 Item 4]. The latter applied to τm,d shows
γT (τm,d) ≥ m−d

2−(3/2)d(dm+ 1)−d.

2. The proof of Theorem 4.7.1 below shows that for the bound on the gap it
is enough to consider the quiver Q(m−1)

d with an additional mth arrow from
d to d− 1.

3. The ideas presented below can be adjusted to prove similar bounds for other
dimension vectors. For example, one can show that the gap for the SL-
action on Q(2)

d with dimension vector (1, 3, 3, . . . , 3, 2) is inverse exponential
in d. This aligns with an algebraic barrier for this action; the invariants
that cut out the null cone for this action have exponential degree [DM18,
Proposition 1.5].

4. In Theorem 4.7.6 we see that the gap γG(τm,d) is only polynomially small
in m and d. Thus, τm,d is an interesting family of representations for which
the weight margin and gap differ significantly. O

To prove Theorem 4.7.1 we proceed again as described in Section 4.4. Note
that the set of weights of τm,d viewed as a subset of (Rm)d is{(

(−1)dεi, (−1)d−1εj, 0, . . . , 0
)
,
(
0, (−1)d−1εi, (−1)d−2εj, 0, . . . , 0

)
, . . .

. . . ,
(
0, . . . , 0, εi,−εj

)
| i, j ∈ [m]

}
.

We define recursively subsets of weights Υm,d ⊆ Ω(τm,d) via

Υm,2 := {(εi,−εj) | i ∈ [m− 1], j ∈ [m]} , and for d ≥ 3

Υm,d :=
{(

(−1)dεi, (−1)d−1εm, 0m, . . . , 0m
)
| i ∈ [m− 1]

}
∪
(
{0m} ×Υm,d−1

)
.

Remark 4.7.3 ([FR21, Remark 4.28]). We note that for all d ≥ 2, Υm,d is not free.
For instance, we can always write

(0m, . . . , 0m, ε1,−ε1) = (0m, . . . , 0m, ε1,−ε2) + (0m, . . . , 0m, 0m, e2 − e1),

i.e., the weights (0m, . . . , 0m, ε1,−ε1), (0m, . . . , 0m, ε1,−ε2) ∈ Υm,d differ by the
root (0m, . . . , 0m, 0m, e2 − e1) of SLm(C)d. Therefore, we cannot deduce a bound
on the gap γG(τm,d) via Proposition 4.3.7. However, the latter allows us to deduce
at least a bound on the gap of τ⊕mm,d . O

In the next two lemmas we show that Υm,d witnesses the bound on γT (τm,d)
and afterwards we use Proposition 4.3.7 to transfer this bound to γG(τ⊕mm,d ).
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Lemma 4.7.4 ([FR21, Lemma 4.29]). For all d ≥ 2 it holds that 0 /∈ conv(Υm,d).

Proof. We prove the statement by induction on d ≥ 2. For d = 2, just note that
any element in conv(Υm,2) ⊆ R2m has value −1/m in themth entry. In particular,
0 /∈ conv(Υm,2). For d ≥ 3 let

x =
∑

ω∈Υm,d

λω ω , λω ≥ 0

be a convex combination of the elements in Υm,d. Assume there is an i ∈ [m− 1]
such that for

ωi :=
(
(−1)dεi, (−1)d−1εm, 0m, . . . , 0m

)
one has λωi > 0. Then the mth entry of x is non-zero, since ωi has mth entry
(−1)d+1/m and all (other) ω ∈ Υm,d have (−1)d+1/m or zero as mth entry. Hence,
x 6= 0 in this case. On the other hand, if λωi = 0 for all i ∈ [m − 1], then
x ∈ {0m}×conv(Υm,d−1) by construction of Υm,d. We conclude x 6= 0 by induction
hypothesis on d− 1.

Lemma 4.7.5 ([FR21, Lemma 4.30]). For d ≥ 2 define

xd := λd
(
(−1)d−1εm, 0m, . . . , 0m

)
∈ (Rm)d, where λd :=

(
d−1∑
i=1

(m− 1)i

)−1

.

Then we have xd ∈ conv(Υm,d) and ‖xd‖2 < |λd| ≤ (m− 1)−d+1.

Proof. We proceed by induction on d ≥ 2. For d = 2, we use Equation (4.4) to
obtain the convex combination

m−1∑
i=1

m∑
j=1

1

(m− 1)m
(εi,−εj) =

1

m− 1
(−εm, 0m) = x2 .

Now assume the claim is proven for some d ≥ 2, hence

λd
(
0m, (−1)d−1εm, 0m, . . . , 0m

)
∈ {0m} × conv(Υm,d) ⊆ conv(Υm,d+1). (4.43)

Setting ν := (m−1)λd+1λ
−1
d we have νλd = (m−1)λd+1 and ν+(m−1)λd+1 = 1.

Together with Equations (4.4) and (4.43) we deduce xd+1 ∈ conv(Υm,d+1) via

νλd
(
0m, (−1)d−1εm, 0m, . . . , 0m

)
+ λd+1

m−1∑
i=1

(
(−1)d+1εi, (−1)dεm, 0m, . . . , 0m

)
=
(
−(−1)d+1λd+1εm , (−1)d−1

[
νλd − (m− 1)λd+1

]
εm , 0m, . . . , 0m

)
=
(
(−1)dλd+1εm, 0m, 0m, . . . , 0m

)
= xd+1 .

This ends the induction. Finally, ‖xd‖2 < |λd| as ‖εm‖2 < 1 by (4.5).



112 Chapter 4. Bounds on Weight Margin and Gap

Proof of Theorem 4.7.1. By Lemma 4.7.4 and Lemma 4.7.5 we have

γT (τm,d) ≤ (m− 1)−d+1.

With the fact Ω(τm,d) = Ω(τ⊕mm,d ) and Proposition 4.3.7 we transfer this bound to
the gap of τ⊕mm,d . To do so, we note that the inner product on (Cm×m)m(d−1), given
by the trace inner product on each Cm×m copy, is invariant under the action of
K = SU(m)d. Distinct Cm×m copies are orthogonal under this inner product.
Thus, to be able to apply Proposition 4.3.7 it is enough to assign to each Cm×m
copy, i.e., to each arrow of Q(m)

d , a matrix Mi such that supp(Mi) is free and
Υm,d =

⋃
i supp(Mi). For this, we consider the m×m matrices

M :=

(
Im−1 0

0 0

)
and P :=

(
0 Im−1

1 0

)
,

and Ei,j is the matrix with (i, j)-entry one and all other entries zero. Then
Ei,iP = Ei,σ(i), where σ : [m] → [m] is the cycle (1 2 . . . m). Therefore, for
k ∈ [m] we have

supp
(
MP k−1

)
=
{(

0m(d−2), εi,−εσk−1(i)

)
| i ∈ [m− 1]

}
;

and {0m(d−2)} ×Υm,2 =
⋃
k∈[m]

supp
(
MP k−1

)
.

For fixed k ∈ [m], i1 6= i2 implies σk−1(i1) 6= σk−1(i2), so any distinct elements of
supp(MP k−1) differ in the last two Rm-components. Hence, each supp(MP k−1)
is free and we assign M,MP, . . . ,MPm−1 to the m arrows that go from vertex d
to vertex d− 1. For l ∈ [d− 2], we assign to the m arrows between the vertices l
and l+ 1 each of the matrices E1,m, E2,m, . . . , Em−1,m at least once. (Exactly one
of the latter matrices is assigned to two of these arrows.) Clearly, the support of
Ei,m, i ∈ [m−1] is free as it contains just one weight. By construction, this whole
assignment gives an element of (Cm×m)m(d−1)) such that its support is Υm,d and
so that we can apply Proposition 4.3.7. This shows

γG(τ⊕mm,d ) ≤ (m− 1)−d+1.

Moreover, the argument shows that m−1 arrows between the vertices l and l+1,
l ∈ [d− 2], would suffice as commented in part two of Remark 4.7.2.

4.7.2 A large lower Bound on the Gap

We show that the gap γG(τm,d) is inverse polynomial in m and d. The presented
proof is completely due to Cole Franks and Visu Makam. I heartily thank them for
the permission to include their arguments here. The main result is the following.

Theorem 4.7.6. For all m, d ≥ 2 it holds that

γG(τm,d) ≥
1

d2m
.
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As a consequence of the “large” gap, the first order algorithm from [BFG+19]
can solve the null-cone membership problem for τm,d in poly(m, d)-time. There are
also algebraic algorithms for this problem that run in polynomial-time, because
Qd is of finite representation type and has no oriented cycles.24 This leads to the
following interesting question.

Problem 4.7.7. Let Q be a quiver of finite representation type and consider the
SL-action on Q with dimension vector (m1, . . . ,md). Is the gap of this action
inverse polynomial in m1, . . . ,md and the number of vertices d?

To prove Theorem 4.7.6 we explicitly state the moment map of τm,d. For
A ∈ Cm×m, we recall from (2.14) that

Φ1(A) = −A†A+
‖A‖2

F

m
Im and Φ2(A) = AA† − ‖A‖

2
F

m
Im . (4.44)

The Hermitian matrices Φ1(A) and Φ2(A) are traceless as tr(A†A) = tr(AA†) =
‖A‖2

F . Furthermore, note that each vertex in Qd is either a source, i.e., the vertex
only appears as a tail of arrows, or a sink, i.e., the vertex only appears as a head.
Thus, one can deduce the moment map of τm,d from Example 2.2.10. There we
computed the moment map (2.15) of the quiver (2.13) with vertex 2 being a sink
of two arrows. Moreover, we stated the moment map (2.18) of a similar quiver
where vertex 2 is a source. With this knowledge we obtain the following.

Lemma 4.7.8. Let B = (B1, B2, . . . , Bd−1) ∈ (Cm×m)d−1. Then the moment map
µ := µG of τm,d at B is µ(B) = ‖B‖−2

(
µ1(B), . . . , µd(B)

)
, where the components

µi(B) are given as follows. We have µd(B) = Φ1(Bd−1) and for i ∈ [d− 1]

µi(B) =

{
Φ1(Bi−1) + Φ1(Bi), if vertex i is a source
Φ2(Bi−1) + Φ2(Bi), if vertex i is a sink

where we set B0 := 0, so that Φ1(B0) = Φ2(B0) = 0.

Next, we point out that the action of G = SLm(C)d on (Cm×m)d−1 via τm,d
preserves the determinant in each Cm×m component. In particular, if for B =
(B1, . . . , Bd−1) ∈ (Cm×m)d−1 there is i ∈ [d − 1] with det(Bi) 6= 0, then B is G-
semistable. Equivalently, if B isG-unstable then rank(Bi) < m for all i ∈ [d−1].25
Thus, the next lemma will allow us to bound ‖µ(B)‖ for an unstable B.

Lemma 4.7.9. Let A ∈ Cm×m. It holds that ‖Φ1(A)‖F = ‖Φ2(A)‖F , and if
rank(A) < m then ‖Φ1(A)‖F ≥ m−1‖A‖2

F .
24Personal communication with Visu Makam. There does not seem to be an explicit reference

in the literature. It seems plausible that the same is true for the optimization methods from
[BFG+19].

25Actually, B is unstable if and only if rank(Bi) < m holds for all i ∈ [d−1]. The “if”-direction
may be shown via Schofield invariants, which can be used to prove that the ring of invariants
is generated by the det(Bi), i ∈ [d− 1].
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Proof. Let USV be a singular value decomposition of A, i.e., U and V are unitary
matrices and S = diag(σ1, . . . , σm) with σi ∈ R≥0 and σ1 ≥ σ2 ≥ · · · ≥ σm. Then
A†A = V †S2V and using that the Frobenius norm is invariant under unitary
transformations we compute

‖Φ1(A)‖F =

∥∥∥∥V †(−S2 +
‖A‖2

F

m
Im

)
V

∥∥∥∥
F

=

∥∥∥∥(S2 − ‖A‖
2
F

m
Im

)∥∥∥∥
F

. (4.45)

A similar computation via AA† = US2U † holds for ‖Φ2(A)‖F , which shows the
first claim. If rank(A) < m, then σm = 0 and we obtain with (4.45) that

‖Φ1(A)‖F =
( m∑
i=1

(
σ2
i −m−1‖A‖2

F

)2
)1/2

≥
∣∣∣σ2
m −m−1‖A‖2

F

∣∣∣ = m−1‖A‖2
F

holds as desired.

Proof of Theorem 4.7.6. Let B = (B1, B2, . . . , Bd−1) ∈ (Cm×m)d−1\{0} be unsta-
ble with respect to τm,d. To prove the claim it suffices to show ‖µ(B)‖ ≥ (d2m)−1,
compare Definition 4.1.1. Since µ(λB) = µ(B) holds for all λ ∈ C×, we can
assume ‖B‖ = 1. Thus, µ(B) =

(
µ1(B), . . . , µd(B)

)
, where µi(B) is as in

Lemma 4.7.8. We note that ‖µ(B)‖ ≥ ‖µi(B)‖ holds for all i ∈ [d].
First, we prove by induction on i ∈ [d− 1] that

i ‖µ(B)‖ ≥ ‖Φ1(Bi)‖ = ‖Φ2(Bi)‖ (4.46)

holds. By Lemma 4.7.9, we have ‖Φ1(Bi)‖ = ‖Φ2(Bi)‖, so it suffices to show the
inequality for one of them. For i = 1, we observe that µ1(B) = Φk(B1) for some
k ∈ {1, 2}, by Lemma 4.7.8. The claim follows with ‖µ(B)‖ ≥ ‖µ1(B)‖. Now,
assume that Equation (4.46) holds for some i < d − 1. Again by Lemma 4.7.8
there exists k ∈ {1, 2} such that µi+1(B) = Φk(Bi+1) + Φk(Bi) and therefore
‖Φk(Bi+1) + Φk(Bi)‖ ≤ ‖µ(B)‖. Together with the triangle inequality and the
induction hypothesis we conclude

‖Φk(Bi+1)‖ ≤ ‖Φk(Bi+1) + Φk(Bi)‖+ ‖ − Φk(Bi)‖ ≤ ‖µ(B)‖+ i ‖µ(B)‖ .

Finally, since 1 = ‖B‖2 =
∑

i ‖Bi‖2
F , there exists j ∈ [d − 1] such that

‖Bj‖2
F ≥ (d − 1)−1 ≥ d−1. We have rank(Bj) < m as B is unstable. Hence,

Lemma 4.7.9 implies ‖Φ1(Bj)‖ ≥ m−1‖Bj‖2
F ≥ m−1d−1. As desired, we obtain

‖µ(B)‖ ≥ 1

j

1

dm
≥ 1

d2m

using Equation (4.46).



Chapter 5

Bounds on the Diameter

This chapter is based on [FR21] and presents the diameter bounds from this
paper. These bounds explain the dichotomy for high precision solutions (HP)
from Table 3.1. Hence, they highly motivate, together with the weight margin
and gap bounds from Chapter 4, the search for new geodesic convex methods.

Since all main proof ideas for the diameter bounds are due to my co-author
Cole Franks, the exposition is restricted to the main results, their implications
and relations to the literature, and a proof outline.

Organization and Assumptions. In Section 5.1 we state the main results on
diameter bounds, and provide a discussion of their implications and relation to
the literature. Afterwards, we give a brief proof outline in Section 5.2.

The whole chapter uses the assumptions stated in Setting 3.0.1; usually ap-
plied to the tensor scaling representation πm,3 from Example 1.3.5.

5.1 Main Results and related Literature

In the following, we discuss the diameter as a complexity parameter and known
upper bounds for it. Moreover, we present the main results, i.e., exponential
diameter lower bounds for array and tensor scaling, and we discuss their impli-
cations and relations to the literature.

We start by recalling Definition 3.2.6. Given a representation π : G→ GL(V )
of a reductive group G, v ∈ V and a precision ε > 0, the diameter was defined as

Dv(ε) := inf
{
R > 0 | inf

g∈B′R
‖g · v‖2 ≤ capG(v) + ε

}
,

where B′R := {k exp(X) | k ∈ K,X ∈ iLie(K), ‖X‖F ≤ R}.
Let us illustrate this for the action of T = STm(C)3 via πm,3, i.e., array scaling.

Similarly to matrix scaling (3.3), for the array pijk := |vijk|2, v ∈ (Cm)⊗3, the
optimization problem

capT (v) = cap(p) := inf
x,y,z∈Rm

fp(x, y, z) := inf
x,y,z∈Rm

m∑
i,j,k=1

pijk e
(εi,εj ,εk)·(x,y,z). (5.1)

captures scaling p to tristochastic, compare Section 3.1. Note, that we can also
restrict to the infimum over (1⊥m)3 = iLie(TK). Since ‖e(x,y,z)·v‖2 = fp(2x, 2y, 2z),
the diameter Dv(ε) in this case is the infimum over all R > 0 such that

inf
{
fp(x, y, z) | (x, y, z) ∈

(
1
⊥
m

)3
, ‖(x, y, z)‖ ≤ 2R

}
≤ capT (v) + ε.
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116 Chapter 5. Bounds on the Diameter

Remember, a group element (in particular, an approximate minimizer) is recov-
ered by t(x, y, z) := exp

(
diag(x), diag(y), diag(z)

)
∈ T .

Significance of the Diameter. The above explanations for array scaling il-
lustrate why one may regard the diameter as a measure for the bit complexity
of an approximate minimizer.1 Furthermore, recall that ‖(x, y, z)‖ measures the
distance between id = exp(0) and t(x, y, z) in the flat manifold T/TK . This
generalizes to the curved manifold G/K, so Dv(ε) captures the distance of an
approximate minimizer to the identity.2 This directly regards it as a complexity
parameter as follows.

Guarantees for many iterative algorithms in (geodesic) convex optimization
require a bound on the distance D from the starting point to an ε-approximate
solution.3 For example, in the commutative setting the diameter bounds in [SV14;
SV19] were used to design ellipsoid methods that are tractable even for very large
support, and in [BLNW20] they were used to bound the running time of interior
point methods. Similarly, diameter bounds were used to bound the running time
of geodesic convex optimization methods [AGL+18; BFG+19].

Specifically, gradient descent (first order) and trust region4 (second order)
methods are iterative algorithms that make progress at each step within a usually
small distance, say upper bounded by η.5 This takes at least D/η many steps to
produce an ε-approximate solution. Therefore, a polynomially large diameter is
a necessary requirement for gradient descent and trust region methods to provide
high precision solutions in polynomial time.

Finally, we remark that cutting plane methods typically use diameter bounds
to control the volume of a starting region.

Known Diameter upper Bounds. In Table 5.1 we present known diameter
upper bounds for matrix, array, operator and tensor scaling. For matrix scal-
ing, we note that wv is the ratio between the sum of the entries of the matrix v
and its least non-zero entry. The upper bound for operator scaling, which also
applies to matrix scaling, is obtained by combining Equation (4.1) with the di-
ameter bound from [BFG+19] (see Theorem 3.2.7). Similarly, combining the
general weight margin lower bound (4.2) from [BFG+19, Theorem 6.9] with The-
orem 3.2.7 yields the bound for tensor scaling, which also applies to array scaling.
Another upper bound for array scaling is poly(m3/22m, log(1/ε)), which follows
from the general upper bound of [SV19] on diameter bounds for unconstrained

1This is similar to the notion of bit complexity in [SV19].
2The set BR := {exp(X) | X ∈ iLie(K), ‖X‖F ≤ R} is a geodesic ball of radius R in G/K

about the identity. Since K acts isometrically on V , we see that Dv(ε) indeed captures the
distance of an approximate minimizer to the identity.

3Here, this distance is the diameter Dv(ε). Indeed, the identity is the natural starting point
in G (more precisely, G/K) for Norm Minimization 3.1.3 and Scaling 3.1.4. Note that a different
starting point exp(X) ∈ G/K already involves a “biased” direction X ∈ iLie(K).

4also called box-constrained Newton’s method
5For example, in [BFG+19] the progress of their geodesic first and second order method is

controlled by the weight norm N(π). Indeed, it bounds the gradient, [BFG+19, Lemma 3.12],
and gives a smoothness as well as a robustness parameter [BFG+19, Propositions 3.13 and 3.15].
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geometric programming. There is also a diameter bound for array scaling in
the multimarginal transport context that is polynomial in the input size, but it
assumes that the tensor has no non-zero entries [LHCJ22].

πm,d T = STm(C)d : commutative G = SLm(C)d : non-commutative

d = 2
matrix scaling:

O(m log(wv/ε)) [CMTV17]
operator scaling:

O
(
m2 log(‖v‖/ε)

)
[BFG+19]

d = 3
array scaling:

O
(
m3/22m, log(‖v‖/ε)

)
[SV19]

tensor scaling: [BFG+19]
O
(√
m(
√

3m)3m log(‖v‖/ε)
)

Table 5.1: Diameter upper bounds for πm,d. In the non-commutative case, we
used Theorem 3.2.7 and the weight margin lower bounds (4.1) and (4.2). The
non-commutative bounds also apply to the commutative case.

We point out that Table 5.1 captures the dichotomy for solving norm mini-
mization with high precision (HP) as presented in Table 3.1.

Main Results. Given the upper bounds for d = 3 in Table 5.1, one is led to ask
whether the exponential behaviour in m is too pessimistic or actually required.
The following two theorems confirm the latter in the high precision regime, i.e.,
for ε being exponentially small in some polynomial in m.

For the commutative case, recall the definition of fp(x, y, z) and cap(p) from
Equation (5.1). We stress that the following theorem is in terms of p ∈ (Rm≥0)⊗3

(which corresponds to (|vijk|2)ijk), and not in terms of v ∈ (Cm)⊗3.

Theorem 5.1.1 (Diameter Bound for Array Scaling, [FR21, Theorem 1.1]).
There is an absolute constant C > 0 and an array p ∈ (Rm≥0)⊗3 with O(m) non-
zero entries, each of bit-complexity O(m), that satisfies the following property.
For all 0 < ε ≤ exp(−Cm2 logm) and (x, y, z) ∈ R3m, if

fp(x, y, z) ≤ cap(p) + ε

then ‖(x, y, z)‖ = Ω
(
2m/3 log(1/ε)

)
. Moreover, cap(p) = 1/2.

The final equality emphasizes that the difficulties do not lie in an additive vs
multiplicative approximation, see Remark 3.2.4. By a simple duplication trick,
the same bound holds for d-dimensional array scaling with d ≥ 3, see [FR21,
Corollary 3.7].

The constructed array p is free, which allows to lift the above theorem to the
non-commutative case of tensor scaling. However, due to some required rounding
(see Section 5.2) the tensor v depends on the precision ε.

Theorem 5.1.2 (Diameter Bound for Tensor Scaling, [FR21, Theorem 1.4]).
For the action of G = SLm(C)3 via πm,3, there is a constant C > 0 such that the
following holds. For all ε ≤ exp(−Cm2 logm), there exists v = v(ε) ∈ (Cm)⊗3

with O(m) non-zero entries of bit complexity O(logm+ log(1/ε)) and

Dv(ε) = Ω
(
2m/3 log(1/ε)

)
.

Moreover, 1/4 ≤ capG(v) ≤ 1 and 1/2 ≤ ‖v‖ ≤ 1.
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Again, the bounds on capG(v) and ‖v‖ ensure that the difficulties are not
caused by requiring an additive approximation, compare Remark 3.2.4. A dupli-
cation trick analogous to [FR21, Corollary 3.7] yields the same diameter bound
for d ≥ 3, but for the action of G = SLm(C)d on tuples of tensors via the repre-
sentation π⊕mm,d, see [FR21, Corollary 4.24].

Implications of the main Results. First, considering the diameter bound
from [BFG+19] via the weight margin, compare Theorem 3.2.7, the main results
show that γT (πm,3) cannot be polynomially small in m. Instead, the weight
margin for array and tensor scaling satisfies γT (πm,3) = Ω

(
2−m/3

)
.6

Taking the explanations on the significance of the diameter into account, The-
orem 5.1.1 shows that gradient descent and trust region methods for 3-dimensional
array scaling with constant (or even polynomial) step size cannot provide high
precision solutions in poly(m, log(1/ε)) time. Therefore, Theorem 5.1.1 explains
why ellipsoid and interior point methods are necessary to achieve HP in polyno-
mial time for array scaling.

Analogously, in the non-commutative case Theorem 5.1.2 shows that geodesic
gradient descent and trust region methods with constant step size cannot ε-
approximate the capacity in poly(m, 1/ε) time for 3-tensors. In particular, the
first and second order method of [BFG+19] cannot solve norm minimization with
high precision for tensor scaling in polynomial time.

Furthermore, Theorem 5.1.2 also indicates that cutting plane methods as sug-
gested in [Rus20] do not suffice for tensor scaling, as follows. Cutting plane
methods usually require an exponential bound on the volume of a known re-
gion containing an approximate optimizer. This is the case for Rusciano’s non-
constructive query upper bound for cutting plane methods on manifolds of non-
positive curvature [Rus20]. This upper bound is essentially tight due to [HM21]7.
However, the volume of a ball in the manifold SLm(C)3/(SUm)3 grows exponen-
tially in the radius, see [GN99]. Therefore, the diameter Theorem 5.1.2, which
is exponential in m, shows that an approximate minimizer is only contained in a
geodesic ball with volume at least doubly exponential in m.

The very recent preprints [Hir22; NW23] study self-concordant functions on
Riemannian manifolds. Moreover, [NW23] provides (the main stage of) an interior
point method on Riemannian manifolds, which can be used to solve Norm Mini-
mization 3.1.3 and Scaling Problem 3.1.4 in the general Setting 3.0.1. However,
the complexity still depends linearly on a diameter bound [NW23, Theorem 1.7].
Hence, the exponential diameter for tensor scaling from Theorem 5.1.2 excludes
polynomial running time, making further research necessary [NW23, Outlook].

Altogether, the provided diameter bounds explain the dichotomy for HP in
Table 3.1. Moreover, they highly motivated and keep motivating8 the search for
and the advancement of sophisticated methods in the geodesic convex setting.

6We stress that the bound in Theorem 4.5.1(b) is better, it also applies to the gap and has
a rather short proof. In contrast, the above diameter bounds and Theorem 3.2.7 have long,
technical proofs and in combination they do not yield a bound on the gap.

7[HM21] applies to the hyperbolic plane, which is a totally geodesic submanifold of the
manifold we consider.

8in view of [NW23, Theorem 1.7]
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Relation to the Literature. We remark that [BLNW20] bounds the diameter
in the commutative case using the inverse of the so-called facet gap, [BFG+19,
Definition 1.8]. The construction for Theorem 5.1.1 has exponentially small facet
gap; see Corollary 5.2.2 below.

Regarding diameter lower bounds, it was shown that there is some bounded
set Γ ⊂ Zm in a poly(m) size ball such that the geometric program with weights
given by Γ has no ε-approximate minimizers of norm poly(m, log 1/ε) [SV19]. We
stress that the specific unconstrained geometric program in the latter result is not
array scaling; also compare Remark 5.2.1 below. Actually, in [SV19, Section 2.1]
the authors ask whether there is some Γ whose elements are Boolean (up to
an additive shift) with a superpolynomial diameter lower bound. As subsets of
Ω(πm,d) are of this form, we answer their open problem in the affirmative.

Comparing with the upper bounds in Table 5.1, we see that the lower bounds
from Theorems 5.1.1 and 5.1.2 are tight up to logarithmic factors in the exponent.

It would be interesting to prove a version of Theorem 5.1.2 that holds for
ε larger than 2−m+1 ≥ γG(πm,3).9 This would imply that trust region methods
cannot solve the null-cone problem for the 3-tensor action in polynomial time.

5.2 Proof Outline

In the following we briefly sketch the proof ideas and methods used to obtain
Theorems 5.1.1 and 5.1.2. This is based on [FR21, Subsections 3.1 and 4.5].

First, we sketch how to construct an array p ∈ (Rm≥0)⊗3 in the commutative
case, Theorem 5.1.1. Recall the formulation of array scaling as a geometric pro-
gram in Equation (5.1). We build both the support supp(p) ⊆ Ω(πm,3) and the
entries of p in [FR21, Section 3] in the following way. We choose a set Γ ⊆ Ω(πm,3),
another weight ω̂ ∈ Ω(πm,3), and an array q ∈ (Rm≥0)⊗3 such that:

1. The set Γ ⊆ Ω(πm,3) is the support of an array q ∈ (Rm≥0)⊗3, and mq is
tristochastic, i.e., all slice sums of q are equal to m−1. As a consequence,
q+++ = 1 and

∑
ω∈Γ qωω = 0, showing that 0 ∈ relint(conv(Γ)).10

2. The affine hull of Γ, should have codimension one11 in R3m.

3. The vector ω̂ ∈ Ω(πm,3) is at a very small, positive distance η from aff(Γ).
Note that this already implies that the facet gap12 of Γ ∪ {ω̂} is small.

Finally, we define the entries of p by pω = 1
2
qω for ω ∈ Γ, pω̂ = 1

2
, and pω = 0

elsewhere. Assuming we have found p according to this process, we now give
some intuition for the diameter bound.

9Note that Theorem 5.1.2 requires a higher precision, namely ε ≤ exp(−Cm2 log(m)).
10This also follows from Hilbert-Mumford for the array scaling action and the tristochastic

array mq; similar to Corollary 3.1.8.
11This will not quite apply in our setting, because aff(Ω(πm,3)) is not full-dimensional. In-

stead, aff(Γ) will be codimension one in aff
(
Ω(πm,3)

)
.

12This is a concept from [BLNW20, Definition 1.8]: the facet gap of Ω ⊆ Rm is the largest
constant C > 0 such that dist(ω, aff(F )) ≥ C for any facet F of conv(Ω) and ω ∈ Ω\F .
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Let v be the projection of ω̂ to the orthogonal complement of aff(Γ). Intu-
itively, the capacity is only approximately attained by vectors very far in the
−v direction. Indeed, first note that cap(q) = 1, by the properties from Item 1
together with the weighted AM-GM inequality. We deduce cap(p) = 1/2, be-
cause cap(p) ≥ 1

2
cap(q) = 1

2
, and fp(−tv/‖v‖) = 1

2
+ e−ηt tends to 1

2
for t→∞.

However, fp(−tv/‖v‖) tends to 1
2
slowly if η is small: fp(−tv/‖v‖) ≤ 1

2
+ ε if and

only if t ≥ −η−1 log(ε) = η−1 log(1/ε).
To conclude rigorously that the capacity is only approached by vectors very

far in the −v direction, we must rule out directions with non-zero components
in aff(Γ). For this, we use in [FR21] the assumption that zero is rather deep in
the relative interior of conv(Γ). Then any ε-approximate minimizer must have
a bounded component in aff(Γ), for otherwise the contribution to fp from the
elements of Γ alone will be larger than 1

2
+ ε.

Remark 5.2.1 (based on [FR21, Subsubsection 1.1.3]). The structure of the ar-
gument bears some similarity to that in [SV19], which uses the construction of
[AV97]. The main difference is that the set Ω(πm,3) in the 3-dimensional array
scaling problem consists of weights of very specific structure: up to an additive
shift of − 1

m
13m, they are Boolean vectors in R3m with exactly one non-zero entry

among indices in the intervals [1,m], [m+1, 2m] and [2m+1, 3m]. Thus, our con-
struction of Γ must consist of weights of this special form and not simply bounded
integral vectors as in [SV19]. This is the main additional technical contribution
of our construction. O

We end the commutative case with a consequence on the facet gap from Item 3.
Corollary 5.2.2 (Facet gap of array scaling, [FR21, Corollary 3.6]).
There is a subset of Ω(πm,3) with facet gap O(2−m/3).

Similarly to lifting bounds from the weight margin to the gap (Chapter 4), we
can lift the diameter bound from the commutative to the non-commutative case,
if the construction is free.
Theorem 5.2.3 (based on [FR21, Theorem 4.20]). Let π : G → GL(V ) be a
representation with assumptions as in Setting 3.0.1. Suppose µT (t · v) = µG(t · v)
for all t ∈ T (which holds if supp(v) ⊆ Ω(π) is free). Then for any R > 0

inf
g∈B′R

‖g · v‖2 = inf
t∈T∩B′R

‖t · v‖2, (5.2)

where B′R :=
{
k exp(X) | k ∈ K,X ∈ iLie(K), ‖X‖F ≤ R

}
.

The above theorem is specifically stated for πm,3 in [FR21], but the argu-
ments of the proof hold in general. Equation (5.2) ensures that for a free vector v
one can always choose an approximate minimizer of capG(v) in T . Since the
array from Theorem 5.1.1 has free support [FR21, Lemma 4.21], one can deduce
Theorem 5.1.2. However, in the latter we need to choose a tensor v such that
pijk = |vijk|2, which is not solvable over the rationals. Hence, we need some
rounding procedure so that the rationals vijk satisfy vijk ≈

√
pijk. Higher preci-

sion, i.e., a smaller ε, requires a more precise rounding. Therefore, the tensor v in
Theorem 5.1.2 depends on the precision ε. The technical details of the rounding
procedure are treated in [FR21, Lemmas 4.22 and 4.23].

For a full proof of the non-commutative case we refer to [FR21, Section 4.5].
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Chapter 6

Maximum Likelihood Estimation

The task of parameter estimation is ubiquitous in statistics. That is, given a
statistical model and observed data, one seeks the parameters of a probability dis-
tribution which “best” explains the data and is contained in the model. There are
many different concepts of parameter estimation, see e.g., [Jay03; LC98; Ric06].
In this thesis we focus on the approach of maximum likelihood estimation (ML
estimation), which was popularized by Ronald Fisher in the early 20th century.
ML estimation is built on an intuitive idea and the ML estimator enjoys several
asymptotic properties [Cra46; Vaa98]. As a consequence, it is frequently used in
practice [Cra86; Mil11; Sev00; WA18].

This chapter provides the necessary background on ML estimation through
the lens of algebraic statistics, and thereby it prepares Chapters 7–10. For further
information on ML estimation in the context of algebraic statistics the reader is
referred to the textbooks [DSS09; PS05; Sul18].

Organization and Assumptions. Section 6.1 provides a brief, general intro-
duction to ML estimation. Afterwards, this is specified for two widely used classes
of models: discrete models in Section 6.2 and Gaussian models in Section 6.3.
The former prepares Chapter 7 while the latter is needed in Chapters 8, 9 and 10.

We assume some familiarity with probability theory, e.g., the amount of
[Sul18, Chapter 2] certainly suffices.

6.1 Parametric Statistical Models

This general introduction on maximum likelihood (ML) estimation closely follows
[Sul18, Chapter 5]. Its purpose is to illustrate that Sections 6.2 and 6.3 follow
the same concept. Let us start with the definition of a statistical model, which
is fundamental for any theory of parameter estimation.

Definition 6.1.1 (Parametric Statistical Model). A collection

PM :=
{
PΨ | Ψ ∈M

}
of probability distributions on a fixed sample space S, parametrized by a set
M ⊆ Rd, is called a parametric statistical model. We assume that each PΨ

admits a density function pΨ with respect to a fixed measure ν on S. N
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The notation of the parameter set M is suggestive: in Sections 6.2 and 6.3
we directly regard the respective parameter sets as statistical models.1

Now, given observed data D, the problem of parameter estimation is to deter-
mine a joint probability distribution from PM explaining the data D. Intuitively,
the idea of ML estimation is to search for the probability distribution in PM
under which it is most likely to observe the data D. Formally, we always assume
that D = (D1, . . . , Dn) is a tuple of n samples that are independent identically
distributed (i.i.d.) according to some unknown PΨ ∈ PM. Then the likelihood
function, given data D, is

LD : M→ R, LD(Ψ) =
n∏
i=1

pΨ(Di) (6.1)

and captures how likely it is to witness the data D under the probability distri-
bution PΨ. Often, it is convenient to consider the log-likelihood function

`D(Ψ) := log
(
LD(Ψ)

)
=

n∑
i=1

log
(
pΨ(Yi)

)
. (6.2)

The task of ML estimation is to maximize the (log-)likelihood function.

Definition 6.1.2 (Maximum Likelihood Estimator (MLE)). Let PM be a para-
metric statistical model with observed data D. If Ψ̂ ∈M satisfies

`D(Ψ̂) = sup
Ψ∈M

`D(Ψ)

we call Ψ̂ a maximum likelihood estimator (MLE) given data D. N

The next concept captures how observed data interacts with the parameters
of a model.

Definition 6.1.3 (Sufficient Statistics). Let PM be a statistical model. We call
a function X a sufficient statistics for PM, if for any Ψ ∈ M and i.i.d. samples
D1, . . . , Dn ∼ PΨ the joint density of D = (D1, . . . , Dn) can be written as

n∏
i=1

pΨ(Di) = f(D)g
(
X(D),Ψ

)
, (6.3)

where f and g are non-negative measurable functions.2 N

Note that the left hand side in Equation (6.3) is LD(Ψ) and hence the log-
likelihood is `D(Ψ) = log(f(D)) + log

(
g(X(D),Ψ)

)
. We see that ML estimation

in a model PM only depends on a sufficient statistics.
Following [BBJJ82, Equation (1.2)] and [Bar83, p. 348], we define a concept

involving a group action.
1This is justified as the models considered in this thesis are identifiable in the sense that the

mapM→ PM, Ψ 7→ PΨ is bijective.
2The identity is a trivial sufficient statistics. However, we are interested in sufficient statistics

that yield a proper reduction, i.e., that different data tuples may have the same value under X.
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Definition 6.1.4 (Transformation Family). Let PM be a statistical model on a
sample space S. We call PM a transformation family3 or transformation model
if there is a group G, consisting of automorphisms of S, that acts transitively on
PM via (g ·P )(A) := P (g−1(A)), where P ∈ PM and A is a measurable event. N

Finally, we mention some interesting, natural questions that arise when study-
ing ML estimation:

1. Is the log-likelihood `D bounded from above? Does an MLE given data D
exist? If an MLE exists, is it unique?

2. How can we compute an MLE?

3. Which sample sizes n guarantee (almost surely) an affirmative answer to
the questions from Item 1?

Interestingly, we see in Chapters 7–10 that we can study these questions for
several important models through the lens of invariant theory. As a preparation,
we focus on discrete models and Gaussian models in the upcoming two sections.

6.2 Discrete Models

In the following we describe ML estimation for models consisting of discrete prob-
ability distributions. The presentation is mainly based on [AKRS21b, Section 2].

We consider the sample space S = [m] = {1, 2, . . . ,m} of m states, which we
endow with the counting measure. Then a probability distribution on S = [m]
is uniquely determined by its density4 p = (p1, . . . , pm), where pj denotes the
probability that the jth state occurs. Such a density is a point in the (m − 1)-
dimensional probability simplex:

∆m−1 :=

{
p ∈ Rm≥0 | p+ =

m∑
j=1

pj = 1

}
.

Using densities as parameters and identifying a model PM of probability distri-
butions on S with its parameter set leads to the following.

Definition 6.2.1 (Discrete Model). A discrete model M of distributions with m
states is a subsetM⊆ ∆m−1. N

Given a tuple D = (D1, . . . , Dn) of i.i.d. samples, the likelihood from (6.1)
can be written as LD(p) =

∏
j p

uj
j , where uj := {i ∈ [n] | Di = j} is the

number of times that the jth state occurs. We see that the vector of counts
u := (u1, . . . , um) ∈ Zm≥0 is a sufficient statistic for any discrete model, compare

3We caution the reader about ambiguities of the term transformation family in the statistics
literature. For example, there is a distinct well-studied concept called power transformation
families, see e.g., [CR81; Sak92] and the references therein. But also Definition 6.1.4 is widely
studied, see e.g., [Rei95] and the literature therein.

4usually called probability mass function in the discrete case
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Definition 6.1.3.5 Therefore, we are allowed to regard the vector of counts u as
data for discrete models and will do so from now on. Note that the sample size
is recovered via n = u+ =

∑m
j=1 uj. Moreover, a vector of counts induces an

empirical distribution ū = 1
n
u ∈ ∆m−1.

Now, given a discrete modelM⊆ ∆m−1 and a vector of counts u ∈ Zm≥0, the
(log-)likelihood function6 becomes

Lu(p) = pu11 · · · pumm respectively `u(p) =
m∑
i=1

ui log(pi). (6.4)

We use the convention 00 = 1, so that the likelihood is always defined on ∆m−1.
This allows MLEs on the relative boundary of ∆m−1, if some entries of u are zero.
Furthermore, following [Lau96, Section 4.2.3] we define the concept of extended
models and MLEs, which are used in our study of log-linear models, Chapter 7.

Definition 6.2.2 (Extended MLE). Given a discrete model M ⊆ ∆m−1 and
u ∈ Zm≥0. The extended model ofM is its Euclidean closureM ⊆ ∆m−1 in Rm.
By compactness ofM and continuity of the likelihood Lu,M admits an MLE p̂
given u, which we call an extended MLE ofM given u. N

Next, we link the log-likelihood to the Kullback-Leibler (KL) divergence. The
KL divergence from q ∈ Rm≥0 to p ∈ Rm≥0 is

KL(p‖q) =
m∑
j=1

pj log
pj
qj
.

In view of our convention 00 = 1, we also use 0 log(0/qj) = 0 (even, if qj is
zero). Although the KL divergence is not a metric,7 for p, q ∈ ∆m−1 it satisfies
KL(p‖q) ≥ 0, and KL(p‖q) = 0 if and only if p = q.

The log-likelihood (6.4) given u can be written, up to additive constant, as

`u(p)−
m∑
j=1

log(ūj) = −n
m∑
j=1

ūj log
ūj
pj

= −n KL(ū‖p). (6.5)

Therefore, maximizing the log-likelihood is equivalent to minimizing the KL di-
vergence to the empirical distribution ū. In particular, an MLE p̂ given u is a
point that minimizes, over the model M, the KL divergence to the empirical
distribution ū. We use this viewpoint in Section 7.3.

We end this section with two examples of discrete models.

Example 6.2.3 (Saturated discrete model). Consider the modelM = ∆m−1 and
a vector of counts u ∈ Zm≥0. There is a unique MLE p̂ given u. By the mentioned
properties of the KL-divergence, it is the empirical distribution: p̂ = ū. ♦

5Here, choose f ≡ 1 and g(p, u) :=
∏
j p

uj

j .
6Strictly speaking we would have to multiply the right hand side of (6.4) with the multinomial

coefficient
(
n
u

)
. However, this does not change the MLE or any other interesting properties of

ML estimation.
7The KL divergence is not symmetric.
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Example 6.2.4 (Independence Model). Consider ∆m1m2−1 ⊆ Rm1×m2 . Then

MX⊥⊥Y =
{
αβT | α ∈ ∆m1−1, β ∈ ∆m2−1

}
=
{
p = (pij) ∈ ∆m1m2−1 | rank(p) = 1

}
is the model of independence of two discrete random variables with m1 re-
spectively m2 states. Note that given p ∈ MX⊥⊥Y , one finds α = (pi,+)i and
β = (p+,j)j as the marginal distributions.

Let u ∈ Zm1×m2
≥0 be a table of counts obtained from n = u++ i.i.d. samples.

Then there is a unique MLE p̂ given u. It is determined by the table marginals:
p̂ij = ui,+u+,j/n

2, see [Sul18, Proposition 5.3.8]. We recover this knowledge in
Example 7.2.5 using the theory of Chapter 7. ♦

Further important examples are discrete graphical models [Lau96; Sul18] and
log-linear models [DSS09; Sul18]. We study the latter class in Chapter 7.

6.3 Gaussian Models

In this section we study ML estimation for Gaussian models. We focus on the
necessary prerequisites for Chapters 8–10. In particular, we define maximum
likelihood thresholds, consider several examples of Gaussian models and study ML
estimation for models given by a directed acyclic graph in detail. The presentation
is based on [AKRS21a; MRS21].

We work in parallel over the real and complex numbers: K ∈ {R,C}. The
cone of symmetric respectively Hermitian positive definite matrices is denoted
PDm(R) respectively PDm(C). Recall that (·)† denotes the Hermitian transpose,
which is just the transpose (·)T if K = R. We note that complex Gaussian
models have been studied in [AHSE95; Goo63] and they are especially interesting
for physics applications. Moreover, when relating ML estimation to invariant
theory in Chapters 9 and 10 it is natural from the invariant theory perspective
to consider complex Gaussian models.

Let us start by recalling the multivariate Gaussian distribution. Consider
the sample space S = Km endowed with the Lebesgue measure. We denote
by Nm(b,Σ) the m-dimensional multivariate Gaussian distribution8 with mean
b ∈ Km and covariance matrix Σ ∈ PDm(K). Its density at y ∈ Km is

pΣ(y) =

{
det(2πΣ)−

1
2 exp

(
−1

2
(y − b)†Σ−1(y − b)

)
if K = R

det(πΣ)−1 exp
(
−(y − b)†Σ−1(y − b)

)
if K = C

(6.6)

compare [Woo56] or [Goo63, Theorem 3.1] for the complex case. The Gaussian
distribution enjoys many nice properties. We shall need the following later on.
Lemma 6.3.1. If Y ∼ Nm(b,Σ) and g ∈ GLm(K), then gY ∼ Nm(gb, gΣg†). In
particular, gY has concentration matrix (g†)−1Σ−1g−1.

Since the exponential and determinant expression in Equation (6.6) involve
the inverse of Σ, it is more convenient to work with the concentration matrix 9

8Often we drop the index m, if the dimension is clear from the context.
9also called precision matrix
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Ψ = Σ−1. We follow the latter approach in this thesis. Furthermore, we restrict
to mean zero Gaussians, which is justified by Remark 6.3.7 below.

Definition 6.3.2 (Gaussian Model). AGaussian model is a subsetM⊆ PDm(K),
which contains the concentration matrices of the respective m-dimensional mul-
tivariate Gaussian distributions of mean zero. N

Example 6.3.3 (Independent univariate Gaussians). The model

M =
{

Ψ ∈ PDm(K) | Ψ is diagonal
}

=
{

diag(d1, . . . , dm) | di ∈ R>0

}
consists of all tuples of m independent univariate Gaussians. ♦

Now, we turn to ML estimation in a Gaussian modelM⊆ PDm(K). Given a
tuple Y = (Y1, . . . , Yn) ∈ (Km)n of i.i.d. samples, the likelihood function (6.1) at
the concentration matrix Ψ ∈M is, up to a scalar factor,

LY (Ψ) =
n∏
i=1

pΨ−1(Yi) =
(

det(Ψ)n
)c(K)

exp

(
−c(K)

n∑
i=1

Y †i ΨYi

)
, (6.7)

where c(R) = 1/2 and c(C) = 1. Hence, the log-likelihood function can be
written, up to additive and positive multiplicative constants, for both R and C as

`Y (Ψ) = log det(Ψ)− tr(ΨSY ), where SY :=
1

n

n∑
i=1

YiY
†
i (6.8)

is the sample covariance matrix , an m×m positive semi-definite matrix. Equa-
tions (6.7) and (6.8) both show that the sample covariance matrix gives rise to a
sufficient statistics of M, compare Definition 6.1.3. We point out that we view
the samples Yi as column vectors and this canonically identifies Y as a matrix in
Km×n ∼= (Km)n. There is no harm in switching between these identifications, and
we often do so implicitly.

Remark 6.3.4. One may consider the concept of an extended MLE for Gaussian
models, similarly to the discrete case in Definition 6.2.2. However, we note that
the Gaussian models considered in this thesis are already Euclidean closed in
PDm(K). Furthermore, taking the closure in the cone of positive semi -definite
matrices does not add anything: the supremum of the likelihood cannot be at-
tained at some rank deficient Ψ as then LY (Ψ) = 0 by Equation (6.7). O

Next, we recall maximum likelihood thresholds for Gaussian models.

Definition 6.3.5 (ML Thresholds). Let M ⊆ PDm(K) be a Gaussian model.
We define three maximum likelihood thresholds (ML thresholds).

(i) mltb(M) is the smallest integer n0, such that for any n ≥ n0 the log-
likelihood `Y is bounded from above for almost all10 Y ∈ (Km)n.

(ii) mlte(M) is the smallest integer n0, such that for any n ≥ n0 an MLE given
Y ∈ (Km)n almost surely exists.

10with respect to the Lebesgue measure
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(iii) mltu(M) is the smallest integer n0, such that for any n ≥ n0 there exists
almost surely a unique MLE given Y ∈ (Km)n.

If such an integer n0 does not exist, we define the respective threshold to be
infinity.11 Note that mltb(M) ≤ mlte(M) ≤ mltu(M). N

The above definition matches those in [DKH21; DM21; DMW22]. We see
that ML thresholds provide an answer to Question 3 raised on page 125, which
concerns sample sizes that (almost surely) guarantee certain properties of the
log-likelihood.
Remark 6.3.6. Consider a Gaussian modelM⊆ PDm(K).

(a) In algebraic settings the desired properties for ML thresholds often hold for
generic Y ∈ (Km)n in the sense of algebraic geometry. That is, a generic
property holds for all Y ∈ (Km)n\Z where Z ⊆ (Km)n is a subvariety of
codimension at least one. As a lower dimensional Zariski closed set of (Km)n

has Lebesgue measure zero, a generic property also holds almost surely.

(b) If `Y is bounded from above on PDm(K), then it is also bounded on M.
A posteriori, we have mltb(M) ≤ mltb(PDm(K)) = m, see Example 6.3.8.
Moreover, for n ≥ m the sample covariance matrix SY from (6.8) runs
through all positive semidefinite m × m matrices, and SY is invertible
for generic Y . Since SY is a sufficient statistics we conclude that either
mlte(M) ≤ m or mlte(M) =∞. This also applies to mltu(M). O

Before exploring some examples of Gaussian models we comment on the con-
sequences of our mean zero assumption.
Remark 6.3.7 (Mean Zero Assumption). We stress that we always assume the
mean to be known and equal to zero. If one allows arbitrary means b ∈ Km, then
a Gaussian model is a subset of Km × PDm(K). The sample mean and sample
covariance matrix for samples Y1, . . . , Yn are

Ȳ =
1

n

n∑
i=1

Yi and S̃Y =
1

n

n∑
i=1

(
Yi − Ȳ

)(
Yi − Ȳ

)†
. (6.9)

They are a sufficient statistics for any Gaussian model, [And03, Theorem 3.4.1],
and give the MLE of the saturated modelKm×PDm(K), [Sul18, Proposition 5.3.7].

Now, considerM⊆ PDm(K). Then the model Km×M always has Ȳ as the
MLE for the mean parameter [Sul18, Proposition 7.1.9]. Moreover, for all three
ML thresholds we have

mlt
(
Km ×M

)
= mlt0(M) + 1, (6.10)

where mlt0 stresses that the mean is known to be zero, compare [DKH21, Re-
mark 1.1].12 The latter has to be kept in mind whenever consulting results in the
literature that deal with arbitrary means. O

11All models in this thesis have finite thresholds. However, it might be that there exists a
modelM with an infinite threshold. A posteriori, we have at least Remark 6.3.6(b).

12According to [DKH21, Remark 1.1] this follows implicitly from classical results in [And03,
Section 3.3].
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Proof of Equation (6.10). The proof idea is thanks to Carlos Améndola. For
Y ∈ Km×n let Ȳ and S̃Y be as in (6.9), and SY as in (6.8). If we consider ML
estimation for the model Km ×M, we have to maximize

˜̀
Y

(
Ȳ ,Ψ

)
= log det(Ψ)− tr

(
ΨS̃Y

)
, (6.11)

where we stress once more that Ȳ is always the MLE for the mean parameter.
Now, the crucial observations are the following. First, Equation (6.11) for ˜̀

Y (Ȳ , ·)
equals the one for `Y (Ψ) in (6.8), except that SY is replaced by S̃Y . Second, the
properties for ML estimation of ˜̀

Y (Ȳ , ·) only depend on S̃Y , similarly for `Y (·)
they only depend on SY . Third, we have the algebraic subsets of PDm(K) (cone
of positive semidefinite matrices){

S̃Y | Y ∈ Km×n} =
{
S ∈ PDm(K) | rank(S) ≤ min{m,n} − 1

}{
SY | Y ∈ Km×n} =

{
S ∈ PDm(K) | rank(S) ≤ min{m,n}

}
;

and the generic rank13 of S̃Y equals min{m,n} − 1, while the generic rank of SY
is min{m,n}. Altogether, we must have Equation (6.10).

In the following we present several important examples of Gaussian models.

Example 6.3.8 (Saturated Gaussian model). Let Y ∈ Km×n be a sample matrix
for the saturated Gaussian modelM = PDm(K). The following is well-known, see
e.g., [Lau96, Theorem 5.1] or [Sul18, Proposition 5.3.7]. The unique maximizer
of `Y over PDm(K) is Ψ̂ = S−1

Y , if the sample covariance matrix SY is invertible.
If SY is not invertible, the likelihood function is unbounded and the MLE does
not exist. One verifies that SY is invertible if and only if Y = Km×n has full
row rank. The latter cannot hold if m > n, and it holds generically if m ≤ n.14
Altogether, we deduce

mltb
(

PDm(K)
)

= mlte
(

PDm(K)
)

= mltu
(

PDm(K)
)

= m.

We recover these facts in Examples 9.3.8 and 9.5.11 using the theory developed
in Chapter 9. ♦

Example 6.3.9 (Matrix and Tensor Normal Models). If one samples matrices
Km1×m2 ∼= Km1m2 , or more generally tensors Km1 ⊗ · · · ⊗ Kmd ∼= Km1···md , then
the saturated model PDm1···md(K) is huge and one needs at least m1 · · ·md many
samples for an MLE to exist (almost surely), compare Example 6.3.8. To decrease
the ML threshold one can presume structural assumptions on the model. A
common approach is to consider the tensor normal model

M⊗
K(m1, . . . ,md) := {Ψ1 ⊗ · · · ⊗Ψd | Ψi ∈ PDmi(K)} ⊆ PDm1···md(K), (6.12)

where ⊗ denotes the Kronecker product of matrices, see Definition 1.3.4. For
d = 2 the modelM⊗

K(m1,m2) is called the matrix normal model, which we study
in further detail in Section 9.4.

13i.e., the rank that is attained for generic Y ∈ Km×n
14If m ≤ n then full row rank holds outside the vanishing locus of the maximal minors of Y .
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Recently, there has been a flurry of new results on ML estimation. For matrix
normal models, the paper [DKH21] gave new characterizations of ML estimation
and new bounds on ML thresholds. By crucially using the relations between in-
variant theory and ML estimation presented in Section 9.3, [DM21] and [DMW22]
completely characterized all ML thresholds for matrix respectively tensor normal
models. Furthermore, [FORW21] provide results on almost optimal sample com-
plexity in tensor normal models. ♦

Example 6.3.10 (Undirected Gaussian graphical model). Let G = (I, E) be an
undirected graph with vertex set I = [m]. Then

Mud
G :=

{
Ψ ∈ PDm(K) | Ψij = Ψji = 0 whenever (i j) /∈ E

}
is the undirected Gaussian graphical model15 given by G. In words, the undi-
rected edges describe the off-diagonal support pattern of the concentration ma-
trices in the model. Statistically, if X ∼ Nm(0,Σ) then for the concentration
matrix Ψ = Σ−1 the condition Ψij = 0 is equivalent the conditional independence
Xi⊥⊥Xj|X[m]\{i,j}, [Lau96, Proposition 5.2] or [Sul18, Proposition 6.3.2]. This
generalizes for distributions in Mud

G via so-called Markov properties16 given by
the undirected graph G, see [Lau96], and [Sul18, Chapter 13] for details.

Regarding ML estimation, it is well-known that mlte(Mud
G ) = mltu(Mud

G ) and
a unique MLE exists if the sample covariance matrix SY is invertible. In this case,
the MLE Ψ̂ ∈ Mud

G is given by Ψ̂ij = (S−1
Y )ij whenever i = j or (i j) ∈ E

and Ψ̂ij = 0 otherwise, see [Lau96, Theorem 5.3]. In particular, mlte(Mud
G ) ≤ m.

However, in general mlte(Mud
G ) can be strictly smaller. We refer to [BS19; Buh93;

GS18; Uhl12] for further results on ML thresholds.
For applications and further details on undirected Gaussian graphical models

we refer to [Lau96; Sul18] and for the complex case to [AHSE95]. ♦

Extended Example: DAG models

In the following we introduce Gaussian graphical models given by directed acyclic
graphs and study ML estimation for these models. This prepares our studies in
Section 9.5 and Chapter 10. In particular, we will generalize Theorem 6.3.16 to
the setting of so-called RDAG models, Theorem 10.3.6. The presentation closely
follows [MRS21] and [AKRS21a, Section 5].

A directed graph is a tuple G = (I, E), where I is a finite set of vertices and
E ⊆ I × I is a set of directed edges. Here (j, i) ∈ E means that G has a directed
edge starting at vertex j and pointing towards i. Instead of (j, i) ∈ E we usually
write j → i and similarly j 6→ i means (j, i) /∈ E. Note that, if not specified
otherwise, the vertex set I of G is [m] = {1, 2, . . . ,m}.

A directed graph G = (I, E) is called acyclic, if G does not contain any cycle,
i.e., G does not contain a directed path i0 i1 · · · ik with i0 = ik. In
particular, G does not contain any loop: i 6→ i for all i ∈ I. From now on

15also called covariance selection model
16We remark that pairwise, local and global Markov property are equivalent for multivariate

Gaussians [Sul18, Section 13.1].
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we abbreviate directed acyclic graph to DAG . The set of parents and the set of
children of a vertex i are, respectively,

pa(i) := {j ∈ I | j → i in G} and ch(i) := {k ∈ I | i→ k in G}.

Definition 6.3.11 (DAG model). A DAG model M→
G given by a DAG G is a

Gaussian model defined by the linear structural equation

y = Λy + ε, i.e., yi =
∑
j∈pa(i)

λijyj + εi, (6.13)

where y ∈ Km, λij = 0 for j 6→ i in G, and ε ∼ N (0,Ω) with Ω ∈ PDm(K) diag-
onal. Since G is acyclic, the matrix Λ ∈ Km×m is nilpotent and hence (Im−Λ) is
invertible. Solving Equation (6.13) for y gives y = (Im−Λ)−1ε. By Lemma 6.3.1,
y is multivariate Gaussian with mean zero and concentration matrix

Ψ = (Im−Λ)†Ω−1(Im−Λ), (6.14)

i.e.,M→
G ⊆ PDm(K) is the set of all concentration matrices of this form. N

The coefficient λij is a regression coefficient , the effect of parent j on child i.
Similarly to Example 6.3.10, the modelM→

G encodes conditional independence:
a node is independent of its non-descendants after conditioning on its parents,
see [Sul18, Chapter 13] or [VP90].

We note that DAG models are also called Gaussian Bayesian networks and
they are a special case of linear structural equation models [Drt18], [Sul18, Sec-
tion 16.2]. DAG models have been applied to cell signalling [SPP+05], gene
interactions [FLNP00], causal inference [Pea09], and many other contexts.
Remark 6.3.12 (based on [MRS21, Remark 1.2]). Throughout this thesis, we
choose an ordering on the vertices of G so that Λ is strictly upper triangular.
That is, if j → i is an edge in G then j > i. Such an ordering is possible as G is
acyclic. Thinking of a vertex label as its age, the ordering ensures that parents
are older than their children. O

Next, we relate undirected models from Example 6.3.10 to DAG models. For
this, we need the following definition.

Definition 6.3.13 (Unshielded collider). An unshielded collider of a directed
graph G is a subgraph j → i← k with no edge between j and k. N

Given a DAG G, we denote by Gu the corresponding undirected graph, which
is obtained by forgetting the direction of each edge in G. The following theo-
rem is the Gaussian special case of [AMP97, Theorem 3.1] respectively [Fry90,
Theorem 5.6]. We give a proof in Section 10.2.

Theorem 6.3.14 ([MRS21, Theorem 3.7]). Let G be a DAG. The DAG model
M→
G is equal to the undirected Gaussian graphical modelMud

Gu on Gu if and only
if G has no unshielded colliders.

Now, we characterize ML estimation for DAG models. To do so, we prove a
lemma that will also be used in Chapter 10.
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Lemma 6.3.15 ([MRS21, Lemma 4.10]). Fix α > 0 and, for γ ≥ 0, consider the
family of functions

fγ : R>0 → R, x 7→ α log(x) +
γ

x
.

(i) If γ = 0, then fγ is neither bounded from below nor bounded from above.

(ii) If γ > 0, then fγ attains a global minimum at x0 = γ
α
with function value

fγ(
γ
α

) = α(log(γ)− log(α) + 1).

(iii) Given γ1 ≥ γ2 > 0, we have fγ1(
γ1
α

) ≥ fγ2(
γ2
α

) at the global minima.

Proof. Part (i) follows from the properties of the logarithm. To prove part (ii),
one computes f ′γ(x) = α

x
− γ

x2
for x > 0. For x > 0 we have

f ′γ(x) = 0 ⇔ α

x
=

γ

x2
⇔ αx = γ ⇔ x =

γ

α
.

Thus x0 := γ
α
is the only possible local extremum of fγ. For x > 0,

f ′γ(x) > 0 ⇔ α

x
>

γ

x2
⇔ αx > γ ⇔ x >

γ

α
.

and similarly one has f ′γ(x) < 0 if and only if x < γ
α

= x0. Therefore, x0 is a
global minimum of fγ. One directly verifies the function value for fγ(x0), and so
part (iii) follows from the monotonicity of the logarithm.

Now, we characterize ML estimation for DAG models via linear independence
conditions on the sample matrix. Let G be a DAG with vertex set I = [m] and
let Y ∈ Km×n be a sample matrix, encoding the n samples which are the columns
Y1, . . . , Yn of Y . For i ∈ [m] we denote by Y (i) the ith row of Y , by Y (pa(i)) the
sub-matrix of Y with rows indexed by the parents of i in G, and by Y (i∪pa(i)) the
sub-matrix of Y with rows indexed by vertex i and its parents.

Let us compute the log-likelihood `Y at some Ψ ∈M→
G . To do so, write Ψ =

(Im−Λ)†Ω−1(Im−Λ) as in (6.14). We denote the entries of Ω by ωii and those of
Λ by λij. First, note that det(Im−Λ) = 1 and hence log(det(Ψ)) = − log(det(Ω)).
Moreover, since Ω−1 ∈ PDm(K) we can consider its square root Ω−1/2 ∈ PDm(K).
Setting A := Ω−1/2(Im−Λ), we have Ψ = A†A and

tr(ΨSY ) =
1

n

n∑
j=1

tr
(
ΨYjY

†
j

)
=

1

n

n∑
j=1

tr
(
(AYj)(AYj)

†) =
1

n
‖AY ‖2

=
1

n
‖Ω−1/2(Im−Λ)Y ‖2 =

1

n

m∑
i=1

∥∥∥ω−1/2
ii

(
Y (i) −

∑
j∈pa(i)

λijY
(j)
)∥∥∥2

.

Altogether, with Equation (6.8) we conclude that for Ψ ∈M→
G

`Y (Ψ) = −
m∑
i=1

logωii +
1

nωii

∥∥∥Y (i) −
∑
j∈pa(i)

λijY
(j)
∥∥∥2

 . (6.15)
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The next result follows from this equation, which views ML estimation for a
DAG model as a collection of several uncoupled regression problems. Although
there does not seem to be a classical reference for this result, it is very likely
known to experts and contained implicitly in the literature.

Theorem 6.3.16 ([MRS21, Theorem 4.9]). Consider the DAG model on G, with
m nodes, and fix a sample matrix Y ∈ Km×n. The following possibilities charac-
terize maximum likelihood estimation given Y :

(a) `Y unbounded from above ⇔ ∃ i ∈ [m] : Y (i) ∈ span
{
Y (j) : j ∈ pa(i)

}
(b) MLE exists ⇔ ∀ i ∈ [m] : Y (i) /∈ span

{
Y (j) : j ∈ pa(i)

}
(c) MLE exists uniquely ⇔ ∀ i ∈ [m] : Y (i∪pa(i)) has full row rank.

Remark 6.3.17 (based on [AKRS21a, Remark 5.4]). We use the convention that
the linear hull of the empty set is the zero vector space. So if a vertex i does not
have parents in G, then Y (i) /∈ span

{
Y (j) : j ∈ pa(i)

}
translates to Y (i) 6= 0. O

Proof of Theorem 6.3.16. We use the notation that was introduced to obtain
Equation (6.15) for `Y (Ψ). Note that each of the entries ωii and λij appears in
exactly one of the m summands in (6.15). Thus, to maximize the log-likelihood,
or equivalently, to minimize the negative log-likelihood, we can minimize each
summand

logωii +
1

nωii

∥∥∥Y (i) −
∑
j∈pa(i)

λijY
(j)
∥∥∥2

(6.16)

for i ∈ [m] independently. We can first determine λ̂ij ∈ K with

ζi :=
∥∥∥Y (i) −

∑
j∈pa(i)

λ̂ijY
(j)
∥∥∥2

= inf
λij∈K

∥∥∥Y (i) −
∑
j∈pa(i)

λijY
(j)
∥∥∥2

.

Such λ̂ij always exist and are determined by

Pi =
∑
j∈pa(i)

λ̂ijY
(j),

where Pi is the orthogonal projection of Y (i) onto span{Y (j) | j ∈ pa(i)}. Note
that the λ̂ij, j ∈ pa(i) are unique if and only if Y (pa(i)) has full row rank. To
finish the proof we apply Lemma 6.3.15 with α = 1 and γ = ζi/n several times.

Let Y (i) ∈ span{Y (j) | j ∈ pa(i)} for some i ∈ [m], i.e., ζi = 0. Then the
summand (6.16) is not bounded from below, see Lemma 6.3.15(i). Hence, setting
ωkk = 1 and λk,l = 0 for all k ∈ [m]\{i} and all l ∈ pa(k) we see that −`Y is not
bounded from below. This proves “⇐” of (a).

If Y (i) /∈ span{Y (j) | j ∈ pa(i)}, i.e., ζi > 0, then log(ωii) + ζi/(nωii) has a
unique minimizer ω̂ii = ζi/n, compare Lemma 6.3.15(ii). Thus, an MLE given by
ω̂ii and λ̂ij exists if Y (i) /∈ span{Y (j) | j ∈ pa(i)} for all i ∈ [m]. This shows “⇐”
of (b) and hence all of parts (a) and (b) as their right hand sides are opposites
and since MLE existence implies `Y is bounded from above.

Since the ω̂ii are uniquely determined (if they exist), an MLE is unique if and
only if all λ̂ij are unique. We have seen that the latter holds if and only if Y (pa(i))

has full row rank for all i ∈ [m]. In combination with part (b) we deduce (c).
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The above theorem will be generalized to so-called RDAG models, see Theo-
rem 10.3.6. Let us shortly illustrate Theorem 6.3.16 and Remark 6.3.17.

Example 6.3.18. Let G be the DAG 2 1 3 and consider a sample matrix
Y ∈ K3×n. By Theorem 6.3.16(b), there exists an MLE given Y if and only if
Y (2), Y (3) 6= 0 and Y (1) /∈ span{Y (2), Y (3)}. Otherwise, the log-likelihood `Y is
not bounded from above. Since Y = Y (1∪pa(1)) we have that there exists a unique
MLE given Y if and only if Y has full row rank, compare Theorem 6.3.16(c). ♦

We use Theorem 6.3.16 to determine the ML thresholds of a DAG modelM→
G .

The result is known in the graphical models literature, see [Lau96, Section 5.4.1]
and [DFKP19, Theorem 1].

Corollary 6.3.19. For the modelM→
G of a DAG G, we have

mltb
(
M→
G
)

= mlte
(
M→
G
)

= mltu
(
M→
G
)

= 1 + max
i∈[m]
| pa(i)|.

Proof. First, assume there is some vertex i ∈ [m] with n < 1 + | pa(i)|. Then, for
a generic Y ∈ Km×n the parent rows Y (j) , j ∈ pa(i) span K1×n as n ≤ | pa(i)|.
Thus, Y (i) is in the linear span of the Y (j) , j ∈ pa(i) for generic Y , so `Y is not
bounded from above for generic Y , by Theorem 6.3.16(a). Hence, we have shown

mltb(M→
G ) ≥ 1 + max

i∈[m]
| pa(i)|. (6.17)

On the other hand, if n ≥ 1 + maxi∈[m] | pa(i)| then Y (i∪pa(i)) ∈ K(1+| pa(i)|)×n

does not have full row rank if and only if all its maximal minors vanish. Thus, for
generic (and hence almost all) Y we have that for all i ∈ [m] the matrix Y (i∪pa(i))

has full row rank. By Theorem 6.3.16(c), this implies

mltu(M→
G ) ≤ 1 + max

i∈[m]
| pa(i)| (6.18)

and combining (6.17) and (6.18) yields the claim.
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Chapter 7

Log-linear Models

Log-linear models are widespread in statistics and play a fundamental role in
categorical data analysis, with a wide range of applications [BFH07]. They are
discrete models, see Section 6.2, and include independence models and discrete
graphical models [Lau96]. There is a long history of the study of log-linear models
in statistics, with an emphasis on ML estimation [FR12]. Log-linear models
play a prominent role in algebraic statistics: the key link to algebra is that the
Zariski closure of a log-linear model is a toric variety, defined by a monomial
parametrization. Toric varieties have a foundational place among the algebraic
varieties studied in algebraic geometry [CLS11].

We study connections between toric invariant theory and maximum likelihood
(ML) estimation for log-linear models. Concretely, we use notions of stability un-
der a torus action to characterize existence of the maximum likelihood estimate
(MLE), Theorem 7.2.1. Moreover, we show that norm minimization over a torus
orbit is equivalent to maximizing the log-likelihood in log-linear models, Theo-
rem 7.2.3. This in turn allows to compare scaling algorithms from statistics and
invariant theory. The whole chapter is based on [AKRS21b], which is joint work
with with Carlos Améndola, Kathlén Kohn and Anna Seigal.

This is the first instance in this thesis which intimately links invariant theory
and ML estimation. In Chapters 8, 9 and 10 we will encounter similar con-
nections between invariant theory and ML estimation for Gaussian models. Of
special interest to the discrete setting here is the study of Gaussian group mod-
els in Chapter 9. The latter is based on [AKRS21a], the companion paper of
[AKRS21b]. We find remarkable similarities and differences between the discrete
and Gaussian settings, which we discuss in Subsection 9.6.2. The discrete case is
presented first, since the study of scaling algorithms for log-linear models moti-
vates and contributes to the algorithmic consequences in Subsection 9.3.1.

Organization and Assumptions. In Section 7.1 we review log-linear models
and known results on their ML estimation. Afterwards, we present the main
results, Theorems 7.2.1 and 7.2.3, and illustrate them in examples, Section 7.2.
Finally, we compare iterative proportional scaling (IPS), a classical method to
find the MLE for log-linear models, with approaches to norm minimization and
scaling from invariant theory in Section 7.3.

137
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7.1 ML Estimation in log-linear Models

Recall our conventions on discrete models from Section 6.2. First, we define
log-linear models following [Sul18, Definition 6.2.1].

Definition 7.1.1. Let A ∈ Zd×m. The log-linear model given by matrix A is

M``
A :=

{
p ∈ relint(∆m−1) | log p ∈ rowspan(A)

}
. (7.1)

where log p denotes the coordinatewise logarithm, which only applies to p with
strictly positive entries. Therefore,M``

A ⊆ relint(∆m−1). N

The superscript in M``
A stresses that we deal with log-linear models and it

distinguishes them from Gaussian modelsMg
A studied in Chapters 8, 9 and 10.

A parametrization of the modelM``
A is given by

φA : Rd>0 −→ ∆m−1

θ 7−→
(

1
Z(θ)

∏d
i=1 θ

aij
i

)
1≤j≤m

(7.2)

where Z(θ) is a normalization factor. Conversely, any discrete model obtained
from such a monomial parametrization is a log-linear model. We observe a first
connection between the statistical model and a torus action: the map φA is, up to
normalization, the action (1.6) of the real positive torus element θ on the all-ones
vector 1m. Furthermore, given a vector of counts u ∈ Zm≥0, the vector Au is a
sufficient statistics for the modelM``

A with respect to the parametrization (7.2).
This follows, e.g., by considering `u(φA(θ)).
Remark 7.1.2 (Assumption 1

T
m ∈ rowspan(A)). For the log-linear model M``

A ,
we assume that the row vector 1T

m is in the row span of A; this is a common
assumption for statistical, as well as algebraic, reasons. First, such log-linear
models are equivalent to discrete exponential families [Sul18, Section 6.2]. Second,
the assumption means the uniform distribution 1

m
1m is in the model. Moreover,

consider the Zariski closure ofM``
A in Cm, defined by the toric ideal

IA = 〈px − py |x, y ∈ Zm≥0 such that Ax = Ay〉 (7.3)

in the polynomial ring C[p1, . . . , pm], where px :=
∏m

j=1 p
xj
j for x ∈ Zm≥0; compare

[Sul18, Proposition 6.2.4]. If 1T
m ∈ rowspan(A), this becomes a homogeneous

ideal: if rTA = 1
T
m for some r ∈ Rd then left multiplying Ax = Ay by rT results

in 1
T
mx = 1

T
my. O

We just mentioned that log-linear models are examples of so-called discrete
exponential families, [Sul18, Section 6.2]. Furthermore, log-linear models contain
the undirected discrete graphical models as a special case via hierarchical log-
linear models, see [Lau96] and [Sul18, Proposition 13.2.5]. In particular, the
independence model is a log-linear model, compare Examples 7.1.3 and 7.2.5.

Example 7.1.3 (based on [AKRS21b, Examples 4.1 and 4.9]). The independence
model of two discrete random variables with m1 respectively m2 states is

MX⊥⊥Y =
{
αβT | α ∈ ∆m1−1, β ∈ ∆m2−1

}
⊆ Rm1×m2 ,
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see Example 6.2.4. For p = (pij) ∈MX⊥⊥Y , we see that the monomial parametriza-
tion pij = αiβj, where i ∈ [m1] and j ∈ [m2], yields a log-linear modelM``

A with
A ∈ Z(m1+m2)×(m1m2)

≥0 , compare (7.2). The matrix A has one row for each of the
parameters αi and βj, and one column for each state (i, j) of the pair of random
variables. For the concrete case m1 = 2 and m2 = 3, we have

11 12 13 21 22 23

A =


1 1 1 0 0 0
0 0 0 1 1 1
1 0 0 1 0 0
0 1 0 0 1 0
0 0 1 0 0 1


α1

α2

β1

β2

β3

.

In general, if we use the same ordering of the parameters and states, we obtain

A =


Im1 ⊗1T

m2

1
T
m1
⊗ Im2

 =



1
T
m2

. . .
1
T
m2

Im2 · · · Im2


∈ Z(m1+m2)×(m1m2), (7.4)

where we use the Kronecker product as introduced in Definition 1.3.4. Since
M``

A lies in the relative interior of ∆m1m2−1, it equals the relative interior of
MX⊥⊥Y . We recover the independence model as the extended log-linear model
M``

A =MX⊥⊥Y , compare Definition 6.2.2.
As mentioned after Equation (7.2),M``

A is the intersection of relint(∆m1m2−1)
with the orbit of the all-ones matrix under the action of GT2m(R) on Rm×m given
by the matrix A in (7.4). Equivalently, M``

A is the orbit of the all-ones matrix
under the left-right action of GTm(R)×GTm(R) on Rm×m, again intersected with
relint(∆m1m2−1).

We illustrate this for the special case m1 = 2 and m2 = 3. The action of
GT5(R) on R3×3 given by (1.5), is as follows. The torus element(

t1 t2 t3 t4 t5
)

=
(
λ1 λ2 ν1 ν2 ν3

)
acts on a matrix x ∈ R3×3 by multiplying the entry xij by

∏5
k=1 t

A(i,j)

k where
A(i,j) denotes the column of A with index (i, j). This is the left-right action of
GT2(R)×GT3(R) on the space of 2× 3 matrices; it sends Mij to λiνjMij. ♦

Now, we consider ML estimation for log-linear models. Since the modelM``
A

is not closed, the MLE may not exist. To ensure existence, recall from Defini-
tion 6.2.2 the notion of an extended log-linear model M``

A ⊆ ∆m−1, and the one of
an extended MLE p̂ ∈ M``

A ofM``
A , which always exists. In fact, for a log-linear

model there is a unique extended MLE [Lau96, Proposition 4.7].1

1It is known that the likelihood function (6.4) is strictly concave onM``
A , see [Sul18, Corol-

lary 7.3.8].
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By [Lau96, Theorem 4.8], the extended MLE given u is the point p̂ ∈ M``
A

such that πL(p̂) = πL(ū), where L := rowspan(A) ⊆ Rm, πL is the orthogonal
projection onto L and ū = n−1u is the empirical distribution. Note that ker(πL) =
L⊥ = im(AT)⊥ = ker(A) and therefore πL(p̂) = πL(ū) holds if and only if ū− p̂ ∈
ker(A). Thus, the extended MLE given u is the point p̂ ∈M``

A satisfying

Ap̂ = Aū. (7.5)

We point out that (7.5) is also the sufficient condition for the MLE given u if it
exists, see [DSS09, Proposition 2.1.5] or [Sul18, Corollary 7.3.9]. In particular, if
the MLE given u exists, it is also the extended MLE. Therefore, the MLE given
u exists if and only if the extended MLE p̂ has positive entries (so that p̂ ∈M``

A).
We give some historical notes on (7.5). Birch [Bir63] was the first to rigorously

study MLE existence in the context of multi-way tables, where he observed that
u having all entries strictly positive is a sufficient condition for the MLE to exist
and derived condition (7.5), sometimes known as Birch’s Theorem, see [PS05,
Theorem 1.10]. The fact that some entries could still be zero without affecting
MLE existence was not fully understood until the work of Haberman, who gave
the first characterization of MLE existence in her paper [Hab74].

A modern necessary and sufficient condition is the following, which is stated in
[AKRS21b] as Proposition 4.2. For this, the convex hull of the columns Aj ∈ Zd
of the matrix A is the polytope

∆A := conv{A1, . . . , Am} ⊆ Rd. (7.6)

Proposition 7.1.4 ([Sul18, Theorem 8.2.1]). Let A ∈ Zd×m be such that 1T
m ∈

rowspan(A) and let u ∈ Zm≥0 be a vector of counts for the log-linear model M``
A.

Then the MLE given u exists inM``
A if and only if Aū ∈ relint(∆A).

In particular, we see that, indeed, if all entries of u are positive then the MLE
always exists. The above proposition allows us to link ML estimation inM``

A to
stability notions.

7.2 Toric Invariant Theory for ML estimation

We give equivalent characterizations ML estimation in via stability under a torus
action, Theorem 7.2.1. Furthermore, we show that a point where the moment map
vanishes yields the (extended) MLE in the log-linear model, see Theorem 7.2.3,
and we illustrate the results in examples.

Recall from Example 1.3.16 the concept of a GTd(C)-action on Cm via a
weight matrix A ∈ Zd×m and a linearization b ∈ Zd. This allows to obtain the
following characterization from Proposition 7.1.4.

Theorem 7.2.1 ([AKRS21b, Theorem 4.3]). Consider a vector of counts u ∈ Zm≥0

with sample size u+ = n, a matrix A ∈ Zd×m with 1
T
m ∈ rowspan(A), and the

vector b := Au ∈ Zd. The stability of 1m ∈ Cm under the action of the torus
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GTd(C) given by matrix nA with linearization b is related to ML estimation in
M``

A given data u as follows.

(a) 1m unstable does not happen
(b) 1m semistable ⇔ extended MLE exists and is unique
(c) 1m polystable ⇔ MLE exists and is unique
(d) 1m stable does not happen

Remark 7.2.2. We note that the weight matrix nA encodes the model M``
A =

M``
nA, while the linearization b = Au depends on the observed data. Furthermore,

we always consider stability notions for 1m, which neither depends on the model
nor the data. We stress that this differs from the Gaussian case. There we always
consider the action via left-multiplication, while the stability notions are in terms
of the observed data; compare the discussion in Subsection 9.6.2. O

Proof of Theorem 7.2.1. Remember that the Hilbert-Mumford Criterion in The-
orem 2.1.9 characterizes stability of 1m under GTd(C) in terms of the weight
polytope ∆nA(1m) and the linearization b. We have ∆nA(1m) = ∆nA since 1m
has full support. By Proposition 7.1.4, the MLE given u exists if and only if
Aū = n−1Au ∈ relint(∆A). The latter is equivalent to b = Au ∈ relint(∆nA),
which is the condition for 1m being polystable from Theorem 2.1.9. This shows
part (c).

Moreover, an extended MLE always exists and it is unique for log-linear mod-
els, compare the discussion around Equation (7.5). Thus, it remains to see that
the cases of unstable and stable do not occur. First, b = Au = nAū lies in
the polytope ∆nA and hence 1m is semistable under GTd(C) by Theorem 2.1.9.
Second, the stable case cannot arise, which is seen as follows. There exists some
r ∈ Rd with rTA = 1

T
m, by the assumption 1T

m ∈ rowspan(A). Thus, the columns
Aj of A all lie on the affine hyperplane r1x1 + · · · + rdxd = 1. Therefore, the
polytope ∆A has empty interior in Rd, and so has ∆nA.

We remark that we could take any other vector of full support in Theo-
rem 7.2.1. The theorem shows that MLE existence can be tested by checking
polystability under the group action. Note that we actually need all four sta-
bility notions when characterizing ML estimation of certain Gaussian models,
compare, e.g., Theorem 9.3.6.

Next, we link the moment map to ML estimation in log-linear models. For
this, recall Kempf-Ness Theorem 2.2.13: a vector v is polystable (respectively
semistable) if and only if the moment map vanishes at a non-zero vector w con-
tained in the orbit (closure) of v; equivalently, the capacity of v is positive and
attained at w. On the other hand, the (extended) MLE maximizes the likelihood
function on the (extended) log-linear model.

Therefore, considering the two optimization problems of maximizing the like-
lihood function in a (extended) log-linear model and of norm minimization in
an orbit (closure) under the torus action, Theorem 7.2.1 states that one problem
attains its optimum if and only if the other one does. The next theorem describes
how these two optima are related via the moment map µ. We remind the reader
that for w ∈ Cm we write w[2] := (|w1|2, . . . , |wm|2), compare Equation (2.10).
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Theorem 7.2.3 ([AKRS21b, Theorem 4.7]). Let A ∈ Zd×m such that 1T
m ∈

rowspan(A) and let u ∈ Zm≥0 be a vector of counts forM``
A with u+ = n. Consider

the torus action of GTd(C) given by matrix nA with linearization b = Au. If
w ∈ GTd(C) · 1m\{0} is such that µ(w) = 0, then the extended MLE given u is

p̂ =
1

‖w‖2
w[2] =

1

‖w‖2

(
|w1|2, |w2|2, . . . , |wm|2

)
∈M``

A . (7.7)

If 1m is polystable, i.e., if w ∈ GTd(C) · 1m, then p̂ is the MLE given u.

Proof. First, recall from Equation (2.10) in Example 2.2.8 that, for the torus
action given by matrix nA and linearization b, the moment map at w ∈ Cm is
given by

µ(w) =
1

‖w‖2

(
nAw[2] − ‖w‖2b

)
. (7.8)

Hence, µ(w) = 0 and b = Au yield that

nAw[2] = ‖w‖2Au , equivalently, A
w[2]

‖w‖2
= A

u

n
= Aū.

Setting p̂ := w[2]/‖w‖2 ∈ ∆m−1, we see that p̂ satisfies the condition (7.5) for the
extended MLE given u. It remains to ensure that p̂ ∈M``

A .
For this, let M``

A

Z
be the smallest Zariski closed subset of ∆m−1 containing

M``
A , i.e., the Zariski closure of M``

A in Rm intersected with the simplex ∆m−1.
By [GMS06, Theorem 3.2], we have M``

A

Z
= M``

A , so it suffices to show that p̂
satisfies the equations in (7.3).

First, we show that w obeys these equations. To do so, recall that A(i) is the
ith row of A. For t ∈ GTd(C) and x ∈ Zm≥0, we compute

(t · 1m)x =
m∏
j=1

(
tnAj−b

)xj
=

m∏
j=1

d∏
i=1

t
nAijxj−xjbi
i =

d∏
i=1

tnA
(i)x−x+b = tnAx−x+b,

Therefore, t ·1m satisfies (t ·1m)x = (t ·1m)y for all x, y ∈ Zm≥0 with nAx−x+b =

nAy − y+b, and the same is true for w ∈ GTd(C) · 1m by continuity. Now, if
x, y ∈ Zm≥0 are such that Ax = Ay, then x+ = y+ as 1T

m is in the row span of A,
compare Remark 7.1.2. Thus, we have nAx− x+b = nAy − y+b and we see that
w indeed satisfies equations (7.3), i.e., wx = wy for all x, y ∈ Zm≥0 with Ax = Ay.

Finally, for each equation wx = wy, we can take the absolute value squared
on both sides to get (w[2])x = (w[2])x. Multiplying the latter with ‖w‖−2x+ and
using the equality x+ = y+ shows that (p̂)x = (p̂)y. This proves p̂ ∈M``

A .
In the polystable case, the vector w lies in the orbit of 1m. Hence, all its

entries are positive, and so are the entries of p̂. Consequently, p̂ ∈ M``
A and

therefore it is the MLE given u.

Theorem 7.2.3 shows that the (extended) MLE can be obtained from norm
minimization on an orbit (closure). It suggests to use algorithms from invariant
theory for the Norm Minimization Problem 3.1.3 and Scaling Problem 3.1.4 to
approximately compute the MLE. We discuss this approach in Section 7.3 and
we motivate the study of these algorithms in the next two examples.
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Example 7.2.4 ([AKRS21b, Example 4.8]). Consider the log-linear modelM``
A

and vector of counts u with n = u+ = 4, where

A =

(
2 1 0
0 1 2

)
, u =

2
1
1

 , b = Au =

(
5
3

)
.

This model is the plane conic x2
2 = x1x3 in relint(∆2) ⊆ R3, compare (7.2). As

usual, we consider the action of GT2(C) on C3 via matrix nA and linearization b.
Since Aū ∈ relint(∆A), the MLE given u exists (Proposition 7.1.4). Equivalently,
the vector 13 is polystable under GT2(C) by Theorem 7.2.1. Thus, there is a
vector w of minimal norm in the orbit of 13 by Kempf-Ness, Theorem 2.2.13. We
illustrate how the MLE given u can be obtained from w, by Theorem 7.2.3.

Since w lies in the orbit of 13, its entries are wj = t
na1j−b1
1 t

na2j−b2
2 , where

ti ∈ C×. One computes that w =
(
λ3 λ−1 λ−5

)T where λ = t1/t2. Moreover,
the moment map vanishes at w, so we have nAw[2] = ‖w‖2b. Combining these,
gives 3|λ|6 − |λ|−2 − 5|λ|−10 = 0, or equivalently, the condition 3ν2 − ν − 5 = 0
for ν = |λ|8. We obtain

p̂ =
w[2]

‖w‖2

|λ|10

|λ|10
=

1

ν2 + ν + 1

ν2

ν
1

 =


31+
√

61
4
√

61+52
3+3
√

61
4
√

61+52
9

2
√

61+26

 ∼
0.4662

0.3175
0.2162


as the MLE given u. ♦

Example 7.2.5 (based on [AKRS21b, Example 4.9]). We revisit the indepen-
dence modelMX⊥⊥Y in terms of log-linear models as in Example 7.1.3. Remember
thatMX⊥⊥Y is the extended log-linear modelM``

A , where A is given by (7.4). As
a sanity check, we apply Theorem 7.2.3 toM``

A and recover the knowledge on the
MLE inMX⊥⊥Y from Example 6.2.4.

Given a data matrix u ∈ Zm1×m2
≥0 , we consider the orbit of the all-ones matrix

1m1×m2 := 1m1 ⊗ 1
T
m2
∈ Cm1×m2 , under the action of GTm1+m2(C) given by

the matrix nA with linearization b = Au ∈ Zm1+m2 , where the sample size is
n = u++. We seek a matrix w ∈ Cm1×m2 in the orbit closure of 1m1×m2 at which
the moment map µ for the action vanishes. Identifying w ∈ Cm1×m2 ∼= Cm1m2 ,
the descriptions of µ in (7.8) and of A in (7.4) yield

n



w
[2]
1,+
...

w
[2]
m1,+

w
[2]
+,1
...

w
[2]
+,m2


= ‖w‖2



u1,+
...

um1,+

u+,1
...

u+,m2


, (7.9)

where we recall that w[2]
ij = |wij|2. By Theorem 7.2.3, the extended MLE given

data u is p̂ = w[2]/‖w‖2 ∈ M``
A . Note that p̂ is the MLE in MX⊥⊥Y given
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data u, because M``
A = MX⊥⊥Y . Now, Equation (7.9) shows that the marginal

distributions of p̂ are

p̂i,+ =
w2
i,+

‖w‖2
=
ui,+
n
, i ∈ [m1] and p̂+,j =

w2
+,j

‖w‖2
=
u+,j

n
, j ∈ [m2].

Since p̂ ∈ MX⊥⊥Y , its entries are given by the product of the corresponding
marginals, compare Example 6.2.4. Hence, we obtain

p̂i,j = p̂i,+p̂+,j =
ui,+u+,j

n2
,

which recovers the knowledge on the MLE inMX⊥⊥Y from Example 6.2.4.
Finally, we note that if w ∈ GTm1+m2(C) · 1m1×m2 , then all entries of p̂ are

positive and so p̂ is the MLE inM``
A given u; also compare Theorem 7.2.3. ♦

Finally, we point out that [AKRS21b, Propositions 4.4 and 4.5] give charac-
terizations for existence of the MLE via semistability. We do not include these
results here for brevity and since they deviate a bit from the main story.

7.3 Scaling Algorithms for log-linear Models

This section presents different possibilities of MLE computation in independence
models and, more generally, log-linear models. We focus on known algorithms in
the statistics community, and on computational consequences of Theorem 7.2.3.
Thereby, we connect ML estimation to scaling algorithms from invariant theory
(see Section 3.2). The purpose of this section is “storytelling”. In particular,
the following discussion contributes to algorithmic consequences in Chapter 9 by
comparing Figures 7.1 and 9.1.2

We saw in Theorem 7.2.3 that the (extended) MLE in a log-linear model can
be obtained from a point of minimal norm in an orbit (closure). This connects
two problems:

1. norm minimization in a complex orbit (closure) under a torus action

2. maximum likelihood estimation in a (extended) log-linear model.

Algorithms exist for both problems: the former can be approached with convex
optimization methods, and the latter with an algorithm called iterative propor-
tional scaling (IPS). In fact, both families of algorithms can be thought of as
generalizations of Sinkhorn scaling. We explain these different generalizations,
and how Theorem 7.2.3 completes the circle of algorithms, see Figure 7.1.

2It naturally motivates to regard geodesic convex methods from invariant theory as iterative
proportional scaling for so-called Gaussian group models (where the group is Zariski closed and
self-adjoint).
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Sinkhorn

scale to doubly stochastic

scale to target marginals

norm minimization

IPS

Left-right action General torus action

Invariant Theory:

Statistics:

MLE = w[2]

‖w‖2

Figure 7.1: [AKRS21b, Figure 4] Overview of different scaling algorithms. The
historical progression is from left to right. The dashed line is Theorem 7.2.3.

Sinkhorn Scaling

We recall that the classical scaling algorithm of Sinkhorn in [Sin64], Algorithm 3.1
(approximately) scales a square matrix M ∈ Rm×m with non-negative entries to
a doubly stochastic matrix. That is, Sinkhorn scaling is a method for matrix
scaling as discussed in the extended example of Section 3.1. This is achieved by
alternately scaling the row and column marginals to one, see Algorithm 3.1.

A natural extension is to scale the matrix M to other fixed row sums and
column sums [SK67]. Both versions of Sinkhorn scaling are depicted on the left
of Figure 7.1. These algorithms involve the left-right action of a pair of tori
GTm1 ×GTm2 on an m1 × m2 matrix: the algorithms iterate between updates
via the left torus and via the right torus.

Alternately scaling of the rows and columns of a matrix to fixed marginals is
an instance of a scaling algorithm which, in the statistics literature, goes back
to Deming and Stephan in [DS40]. For the independence modelMX⊥⊥Y on two
variables, the algorithm finds the MLE by alternating between scaling the row
sums and the column sums to match the marginals of the empirical distribution.
Given an observed matrix of counts u ∈ Zm×m≥0 with sample size u++ = n, and
initialized at the uniform distribution, the algorithm has two steps. The (i, j)
entry changes in these two steps as follows:

1

m2
7→ 1

m
· ui+
n
7→ ui+

n
· u+j

n
. (7.10)

Its output is the MLE inMX⊥⊥Y given u, which is extended MLE of the corre-
sponding log-linear model, compare Examples (7.1.3) and 7.2.5. This is the first
example of iterative proportional scaling (IPS), which we describe next.

Iterative Proportional Scaling (IPS)

We have just seen that alternating scaling of a matrix to fixed row and column
sums gives the MLE to the independence model, when initialized at the uniform
distribution. This is scaling under a product of tori GTm1 ×GTm2 . We saw in
Examples 7.1.3 and 7.2.5 how the independence model fits into the framework
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of log-linear models. In terms of the group action, the left-right action of a pair
of tori GTm1 ×GTm2 is the action of GTm1+m2 , acting via (1.5), where A is the
matrix in (7.4).

In the following, we explain how Sinkhorn scaling extends to IPS for ML
estimation in a general log-linear model, see the bottom arrow of Figure 7.1.

Alternating between matching row and column sums can be extended to hi-
erarchical models, which summarize data by contingency tables [Fie70], by it-
eratively updating the various marginals. The approach was extended to more
general log-linear models by Darroch and Ratcliff in [DR72].

For the log-linear modelM``
A , the MLE p̂ must satisfy the equation Ap̂ = Aū,

(7.5), from Birch’s theorem, where ū = u
n
is the empirical distribution. IPS finds

the extended MLE inM``
A given an empirical distribution ū ∈ ∆m−1. We define

IPS for a log-linear model given by a matrix A ∈ Zd×m≥0 whose column sums are
all equal. Starting at the uniform distribution p(0) = 1

m
1m, we iterate until the

kth update p(k) has sufficient statistics b(k) = Ap(k) close to the target sufficient
statistics b = Aū, i.e., until (7.5) holds approximately. The update step is:

p
(k+1)
j =

d∏
i=1

(
(Aū)i

(Ap(k))i

)aij/α

p
(k)
j , (7.11)

where α is the common column sum of A; see [Sul18, Algorithm 7.3.11].3 This
is the action of a torus element (obtained by componentwise division of Aū by
Ap(k) and then componentwise exponentiation by 1/α) on the vector p(k). Here
the torus action is given by the matrix A with linearization b = 0.

The IPS method is a minimization approach: at each step it minimizes the
KL divergence to the MLE.

Proposition 7.3.1 ([AKRS21b, Proposition 5.1]). Consider a vector of counts
u ∈ Zm≥0 for the log-linear model M``

A, where A ∈ Zd×m has 1T
m in its row span.

Then there exists a matrix Ã ∈ Q(d+1)×m
≥0 , with all column sums equal, such that

M``
A =M``

Ã
, iterative proportional scaling in (7.11) with matrix Ã converges, and

at each update step the KL divergence to the MLE decreases.

Proof. The proof of convergence of IPS is given in [DR72, Theorem 1] in the
case where the entries of A are real and non-negative with each column of A
summing to one. There, the authors show that each step of IPS decreases the KL
divergence KL(p̂‖p(k)) from the kth iterate p(k) to the MLE p̂. Since replacing A
by 1

α
A does not change the update step (7.11), the KL divergence also decreases

for any matrix with real and non-negative entries and all column sums equal.
We explain how this covers log-linear models defined by integer matrices with

1
T
m in the row span. We modify A without changing its row span, i.e., without

changing the modelM``
A . First, we add a sufficiently large positive integer to every

entry of A. For a general choice of integer, this does not change rowspan(A) since
it adds a multiple of the row vector 1T

m, which belongs to rowspan(A), to every

3[Sul18, Algorithm 7.3.11] involves φA,hi (θ), which is defined in [Sul18, Definition 6.2.2]. Note
that φA,h in [Sul18] does not involve the normalization factor Z(θ) like in our Equation (7.2).
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row. Second, let α be the maximum of the column sums A+,j. Add another row
to the matrix, with entries α − A+,j. The extra row is a linear combination of
1
T
m and the rows of A, so the augmented matrix has the same row span as A. By

construction, the column sums of the augmented matrix Ã are all equal to α.

Remark 7.3.2 ([AKRS21b, Remark 5.2]). We saw in Equation (6.5) from Sec-
tion 6.2 that p̂ = argminp∈M``

A
KL(ū‖p). Here, we use KL divergence differently,

measuring the KL divergence from iterate p(k) to the MLE: KL(p̂‖p(k)). O

Curiously, when IPS for log-linear models in (7.11) is applied to the indepen-
dence model, we do not recover the classical IPS with Sinkhorn updates, because
the column sums of the integer matrix A for the independence model in (7.4)
are α = 2, hence there is a square root in the update step. If, instead, we did
IPS with the same matrix A but α = 1 in (7.11) we would recover the two steps
in (7.10) in a single step. This leads naturally to the question of which exponents
α achieve convergence, and how the choice of α affects the convergence rate. This
is the essence of an open problem in algebraic statistics, see [DSS09, Section 7.3].

Norm Minimization

We explain/recall how Sinkhorn scaling generalizes to norm minimization for
torus actions in invariant theory; see the top arrow of Figure 7.1.

For this, the extended example on matrix scaling from Section 3.1 is crucial.
We recall that given a matrix v ∈ Cm×m the left-right action of T := STm(C)2

relates to matrix scaling of Mv =
(
|vij|2

)
. By Proposition 3.1.7, Mv is (approxi-

mately) scalable if and only if the moment map vanishes at some non-zero vector
w in the orbit (closure) of v under T . By Kempf-Ness Theorem 2.2.13, the vanish-
ing of the moment map at w is equivalent to the capacity capT (v) = inft∈T ‖t ·v‖2

being positive and attained at w. Therefore, an appropriate normalization4 of the
update steps in Sinkhorn scaling (Algorithm 3.1) solve the Norm minimization
Problem 3.1.3 and Scaling Problem 3.1.4 for v under the action of T .

We have seen in Equation (3.1) that norm minimization for any algebraic
action of a torus is a convex optimization problem. In the specific situation of
log-linear models, the action of GTd(C) is given by matrix A′ = nA − 1

T
m ⊗ b ∈

Zd×m.5 The vector 1m is always semistable, see Theorem 7.2.1. By Kempf-Ness,
norm minimization converges to a non-zero vector w ∈ GTd(C) · 1m at which
the moment map vanishes. Hence, common algorithms from the vast literature
on convex optimization can be used to approximate the capacity and find the
(extended) MLE, using Theorem 7.2.3. In particular, one can use the methods
mentioned in the paragraph on the commutative case in Section 3.2.

Finally, we recall that the alternating minimization idea from Sinkhorn’s al-
gorithm generalizes to operator scaling, Algorithm 3.2. The latter solves norm
minimization (and scaling) for the left-right action of SLm1(C) × SLm2(C) on
the space of matrix tuples (Cm1×m2)n. We discuss connections between operator
scaling and statistics in Subsection 9.4.4.

4similarly to Algorithm (3.2) to ensure the determinant one conditions of STm(C)2

5This is the action given by nA with linearization b, compare Definition 1.3.4.
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Comparison of Algorithms

We have seen in the previous paragraphs that IPS and norm minimization can be
viewed as generalizations of Sinkhorn scaling. Theorem 7.2.3 closes the cycle of
algorithms from different communities, by showing how to obtain the (extended)
MLE from a complex point of minimal norm in an orbit (closure); see Figure 7.1.

This bridges several differences between IPS and norm minimization. We
summarize these differences here. First, when computing the capacity of 1m, the
norm is minimized along a complex orbit closure (see Theorem 7.2.3), whereas
every step in IPS involves real numbers. Secondly, the torus action given by
matrix nA that is used for computing the capacity is linearized by b = Au (see
Theorem 7.2.3), whereas IPS uses the action given by matrix A with trivial
linearization b = 0. Finally, the objective functions differ: the capacity is defined
in terms of the Euclidean norm, which does not appear in IPS; instead IPS
minimizes KL divergence (see Proposition 7.3.1). In the following example we
see that, while IPS decreases the KL divergence to the MLE, it may increase the
Euclidean norm.

Example 7.3.3 ([AKRS21b, Example 5.3]). Consider the matrix A and vector
of counts u from Example 7.2.4, i.e.,

A =

(
2 1 0
0 1 2

)
, u =

2
1
1

 .

We use IPS to compute the MLE inM``
A . We start at the uniform distribution

p(0) = 1
3
13 and do update steps as in (7.11) with matrix A. These IPS steps

converge by Proposition 7.3.1, since the matrix A has real non-negative entries
and all column sums are equal. We obtain p(1) = 1

12

[
5
√

15 3
]T. Note that

the sum of the entries of p(1) is strictly less than one. The KL divergence from
the uniform distribution to the MLE is KL(p̂‖p(0)) ∼ 0.047, and after the first
update it is KL(p̂‖p(1)) ∼ 0.016. However, we have ‖p(1)‖2 = 49

144
, which exceeds

‖p(0)‖2 = 1
3
. ♦



Chapter 8

Gaussian Models via Symmetrization

This chapter starts our studies of ML estimation on Gaussian models and
sets the stage for Chapters 9 and 10. We define so-called Gaussian models via
symmetrization, which in hindsight deserve a treatment on their own. The main
result is the weak correspondence, Theorem 8.2.3. It views maximizing the log-
likelihood as a norm minimization problem and provides a first dictionary be-
tween stability notions and ML estimation in the Gaussian case. The weak cor-
respondence generalizes similar statements of [AKRS21a] and we need this level
of generality in Chapter 10.

The chapter is in parts based on discussions with Anna Seigal and Visu Makam
and on our joint paper [MRS21, Appendix A].

Organization and Assumptions. In Section 8.1, we define Gaussian models
via symmetrization and state simple properties of these. Afterwards, we define
stability notions under sets and prove the weak correspondence, Section 8.2.

Similarly to Section 6.3 we work in parallel over K ∈ {R,C}. Remember that
(·)† is the Hermitian transpose, which equals the transpose (·)T if K = R.

8.1 Examples and first Properties

Definition 8.1.1 (Gaussian model via symmetrization, Gaussian group model).
For a subset A ⊆ GLm(K) we define

Mg
A :=

{
a†a | a ∈ A

}
⊆ PDm(K), (8.1)

the Gaussian model via symmetrization of A. If A = G is a subgroup of GLm(K)
we callMg

G a Gaussian group model . N

The superscript g indicates thatMg
A is a Gaussian model and distinguishes it

from log-linear modelsM``
A , which are studied in Chapter 7. We point out that for

K = R the Hermitian transpose a† is just the transpose aT. Hence, Definition 8.1.1
matches the definition of Gaussian group models over R respectively C given in
[AKRS21a] and its generalizations toMg

A in [MRS21].
A positive definite matrix Ψ ∈ PDm(K) admits a Cholesky decomposition:

there is a unique upper triangular matrix chol(Ψ) ∈ GLm(K) with positive di-
agonal entries such that Ψ = chol(Ψ)† chol(Ψ). As a consequence, any Gaussian
model is of the formMg

A.

Proposition 8.1.2. Let M ⊆ PDm(K) be a Gaussian model. Then there exists
a subset A ⊆ GLm(K) withM =Mg

A.

149
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Proof. The subset A := {chol(Ψ) | Ψ ∈ M} ⊆ GLm(K) satisfies M = Mg
A by

construction. Another choice for A is {Ψ1/2 | Ψ ∈ M}, where Ψ1/2 denotes the
square root of Ψ, i.e., the unique positive definite matrix whose square is Ψ.

Remark 8.1.3. We think of the setA as a parametrization of the modelM =Mg
A.

A Gaussian model may admit many different parametrizations, e.g., whenever we
have A ⊆ B ⊆ {ga | a ∈ A, g†g = Im} it holds thatMg

A =Mg
B. O

Example 8.1.4 (Saturated Gaussian Model). The saturated Gaussian model
M = PDm(K) can be parametrized by any A ⊆ GLm(K) that contains the group
Bm(K) of invertible upper triangular matrices.1 In particular, we have PDm(K) =
Mg

GLm(K) =Mg

Bm(K). We will see corresponding statistical interpretations of these
parametrizations: M = Mg

GLm(K) is studied as a Gaussian group model with
self-adjoint group in Example 9.3.8;M =Mg

Bm(K) arises as a directed Gaussian
graphical model in Example 9.5.11. ♦

In statistics one often studies Gaussian models which are closed under pos-
itive scalars. In this regard, the following proposition2 justifies the assumption
“A ⊆ GLm(K) is closed under non-zero scalar multiples” of Theorem 8.2.3. The
assumption is used there and throughout the thesis to relate ML estimation of
the modelMg

A to norm minimization and to stability notions.

Proposition 8.1.5. A Gaussian model M ⊆ PDm(K) is closed under positive
scalar multiples if and only if there is some set A ⊆ GLm(K) closed under non-
zero scalar multiples such thatM =Mg

A.

Proof. To prove the “if”-part, let Ψ ∈M =Mg
A. Then there is some a ∈ A with

Ψ = a†a. For λ > 0, we have
√
λa ∈ A by assumption on A and hence

λΨ =
(√

λa
)†(√

λa
)
∈Mg

A =M

as claimed.
Conversely, assume thatM is closed under positive scalar multiples. Consider

the set
A := {τ chol(Ψ) | τ ∈ K×,Ψ ∈M},

which is closed under non-zero scalar multiples. We have chol(Ψ) ∈ A for all
Ψ ∈M and thusM⊆Mg

A. On the other hand, for all τ ∈ K× and all Ψ ∈M,(
τ chol(Ψ)

)†(
τ chol(Ψ)

)
= |τ |2 Ψ ∈M,

where we used |τ |2 > 0 and the assumption onM. This showsM =Mg
A.

Remark 8.1.6. The proof of Proposition 8.1.5 shows that the statement remains
true, if we replace the assumption on A by “A ⊆ GLm(K) closed under positive
scalar multiples”. Indeed, the only necessary adjustment is to consider A =
{λ chol(Ψ) | λ > 0,Ψ ∈M} for the “only if”-direction. O

1These are not all options, e.g., {chol(Ψ) | Ψ ∈ PDm(K)} is strictly contained in Bm(K).
2This proposition arose from a discussion with Anna Seigal and Visu Makam.
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8.2 The weak Correspondence

In this section we prove the main result of this chapter – the so-called weak
correspondence3, Theorem 8.2.3. The weak correspondence casts maximizing the
log-likelihood function as a norm minimization problem. This in turn allows to
relate ML estimation to stability notions, which we introduce now.

Fix a subset A ⊆ GLm(K) and a tuple of samples Y = (Y1, . . . , Yn) ∈ (Km)n.
Remember that we view the samples Yi as column vectors, which identifies Y as
a matrix in Km×n ∼= (Km)n. Often we switch implicitly between these identifica-
tions. Given some a ∈ A, we set

a · Y := (aY1, . . . , aYn) ∈ (Km)n ∼= Km×n,

which is just the multiplication of the matrices a and Y . The dot indicates that
we think of the set A “acting” via left multiplication on Km×n ∼= (Km)n. In
analogy to group actions we define the orbit of Y and the stabilizing set of Y
under the set A as

A · Y := {a · Y | a ∈ A} and AY := {a ∈ A | a · Y = Y }, (8.2)

respectively.4 Analogous to the topological stability notions for group actions,
Definition 1.4.1, we make the following definitions.

Definition 8.2.1 (Stability Notions for Sets, [MRS21, Definition A.1]).
We say the tuple of samples Y ∈ (Km)n ∼= Km×n, under the set A, is

(i) unstable if 0 ∈ A · Y ;

(ii) semistable if Y is not unstable, i.e., 0 /∈ A · Y ;

(iii) polystable if Y 6= 0 and the set A · Y is Euclidean closed;

(iv) stable if Y is polystable and AY is finite. N

If A is a subgroup of GLm(K), then the above stability notions are just the
usual topological stability notions under the action onKm×n via left-multiplication.

To prove the weak correspondence we need the following lemma.

Lemma 8.2.2. Fix m,n > 0 and, for γ ≥ 0, consider the family of functions

fγ : R>0 → R, x 7→ γ

n
x−m log(x).

(i) If γ = 0, then infx>0 fγ(x) = −∞.

(ii) If γ > 0, then fγ attains a global minimum at x0 = mn
γ

with function value
fγ(

mn
γ

) = m(1− log(mn) + log(γ)).

3The name weak correspondence was coined by Anna Seigal during discussions with Gergely
Bérczi, Eloise Hamilton, Visu Makam and myself.

4Since A is just a set one needs to be careful: known results from the theory of group actions
do not need to hold. For example, in general the orbits do not form a partition of Km×n.
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(iii) Given γ1 > γ2 > 0, we have fγ1(
α
γ1

) > fγ2(
α
γ2

) at the global minima.

Proof. The first part follows from the properties of the logarithm. To prove
part (ii), one computes for x > 0 that f ′γ(x) = γ

n
− m

x
and f ′′γ (x) = m

x2
> 0. The

latter implies that fγ is strictly convex and hence the former yields that x0 = mn
γ

is the unique global minimum. One directly verifies the equation for fγ(x0), so
part (iii) follows from the strict monotonicity of the logarithm.

Recall Equation (6.8): for the model Mg
A and tuple of samples Y ∈ (Km)n

the log-likelihood function `Y at Ψ = a†a, where a ∈ A, is given by

`Y (Ψ) = `Y
(
a†a
)

= log det
(
a†a
)
− tr

(
a†aSY

)
, where SY =

1

n

n∑
i=1

YiY
†
i .

A key for relating ML estimation to norm minimization is the following observa-
tion: for all a ∈ A we compute5

n tr
(
a†aSY

)
=

n∑
i=1

tr
(
Y †i a

†aYi
)

=
n∑
i=1

(aYi)
†aYi = ‖a · Y ‖2 (8.3)

where we used in the second equality that Y †i a†aYi = (aYi)
†aYi is a scalar. Hence,

the log-likelihood `Y at Ψ = a†a can be rewritten as

`Y
(
a†a
)

= log det
(
a†a
)
− 1

n
‖a · Y ‖2. (8.4)

We use this equation to prove the weak correspondence. To state it, set

ASL := {a ∈ A | det(a) = 1}, (8.5)
A−SL := {a ∈ A | det(a) = −1}, (8.6)
A±SL := {a ∈ A | det(a) = ±1}. (8.7)

The weak correspondence, Theorem 8.2.3, is based on [MRS21, Proposition A.4]
and generalizes [AKRS21a, Proposition 3.4 and Theorem 3.6] to subsets A ⊆
GLm(K). Its key feature is that it casts maximizing the log-likelihood as a two
step optimization problem, compare Equation (8.8). First, one minimizes ‖b ·Y ‖2

over b ∈ A±SL, i.e., one computes capA±SL
(Y ). Afterwards, one is left with a

univariate convex optimization problem. This two step approach in combination
with Lemma 8.2.2 allows to connect ML estimation to stability notions.

Theorem 8.2.3 (Weak Correspondence [MRS21, Proposition A.4]).
Let A ⊆ GLm(K) be closed under non-zero scalar multiples. The supremum of
the log-likelihood `Y overMg

A can be computed as a double infimum:

sup
a∈A

`Y
(
a†a
)

= − inf
x∈R>0

(
x

n

(
inf
b∈A±SL

‖b · Y ‖2

)
−m log(x)

)
. (8.8)

5Recall that, if not stated otherwise, we consider the norm induced by the standard inner
product, so Km×n is equipped with the Frobenius norm. Thus, the norm of Y does not change
under the identification Km×n ∼= (Km)n.
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The MLEs, if they exist, are the matrices λb†b, where b ∈ A±SL minimizes the
inner infimum and λ ∈ R>0 is the unique global minimum of the outer infimum.
Equation (8.8) gives a correspondence between stability under A±SL and maximum
likelihood estimation in the modelMg

A given sample matrix Y ∈ Km×n:

(a) Y unstable ⇔ likelihood `Y unbounded from above
(b) Y semistable ⇔ likelihood `Y bounded from above
(c) Y polystable ⇒ MLE exists.

The whole statement holds for ASL replacing A±SL, if

(i) K = C, or

(ii) K = R and for any a ∈ A there is an orthogonal matrix o = o(a) such that
oTa ∈ A and det(oTa) > 0.

Remark 8.2.4. The weak correspondence applies exactly to those Gaussian models
M ⊆ PDm(K) that are closed under positive scalar multiples. Indeed, these
models are exactly the ones that admit a set A ⊆ GLm(K) closed under scalar
multiples such thatM =Mg

A, see Proposition 8.1.5. O

Proof of Theorem 8.2.3. By Equation (8.4), maximizing `Y over Mg
A is equiva-

lent to minimizing the function

f : A → R, a 7→ 1

n
‖a · Y ‖2 − log det(a†a).

Using the assumption on A we can rewrite an element a ∈ A as follows. For
K = R, let τ := m

√
| det(a)| ∈ R×, then b := τ−1a ∈ A±SL and a = τb. If K = C,

let τ ∈ C× be some mth root of det(a), so b := τ−1a ∈ A±SL and a = τb. (Actually,
b ∈ ASL and this leads to the fact that A±SL may always be replaced by ASL given
K = C.) Setting x := |τ |2, we compute both in the real and complex case that

f(a) =
|τ |2

n
‖b · Y ‖2 − log det

(
|τ |2b†b

)
=
x

n
‖b · Y ‖2 −m log(x).

Let γ := infb∈A±SL
‖b · Y ‖2. The above argument and computation yields6

inf
a∈A

f(a) = inf
x>0, b∈A±SL

x

n
‖b · Y ‖2 −m log(x) = inf

x>0

x

n
γ −m log(x),

i.e., we obtain Equation (8.8).
By Lemma 8.2.2, infa∈A f(a) = −∞ if and only if γ = infb∈A±SL

‖b · Y ‖2 = 0,
i.e., if and only if Y is unstable under A±SL. This shows parts (a) and (b).

To prove (c), assume that Y is polystable under A±SL. Then γ > 0 as Y is
semistable and hence x 7→ γn−1x − m log(x) is minimized by a unique λ > 0,
by Lemma 8.2.2. Since A±SL · Y is closed in Km×n, we see that γ is attained by

6For a function F : X×Y → R one has infx∈X,y∈Y F (x, y) = infx∈X infy∈Y F (x, y). Alterna-
tively, one can use Lemma 8.2.2: the infimum of the function R>0 → R, x 7→ γn−1x−m log(x)
increases as γ ≥ 0 increases.
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some b in the compact set (A±SL · Y ) ∩ {Z ∈ Km×n | ‖Z‖2 ≤ γ + 1}. Thus,
−f
(√

λb
)

= supΨ∈Mg
A
`Y (Ψ) and an MLE given Y , namely λb†b, exists.

Using Equation (8.8) we see that actually any matrix of the form λb†b, where
λ and b are as in the statement, is an MLE. Conversely, let â ∈ A be such that
Ψ̂ := â†â ∈ Mg

A is an MLE given Y . Similar to the above, write â = τ̂ b̂ with
τ ∈ K× and b̂ ∈ A±SL. Then `Y (Ψ̂) = −f(â) is the maximum of `Y , equivalently,

inf
a∈A

f(a) = f(â) =
|τ̂ |2

n
‖b̂ · Y ‖2 −m log

(
|τ̂ |2
)
.

Therefore, the inner and outer infima in (8.8) must be attained by |τ̂ |2 and b̂,
respectively; otherwise we would obtain a contradiction to infa∈A f(a) = f(â) via
Lemma 8.2.2. Altogether, Ψ̂ = |τ̂ |2 b̂†b̂ has the claimed form.

Finally, we discuss two situations in which A±SL can be replaced by ASL. We
already mentioned that we can write a = τb with τ ∈ C× and b ∈ ASL, if
K = C. On the other hand, if condition (ii) is satisfied, then any a ∈ A can
be rewritten as a = τob, where τ := m

√
| det(a)| and b := τ−1oTa. We have

b ∈ A, because oTa ∈ A and A is closed under non-zero scalars. Furthermore,
det(oTa) = det(o) det(a) > 0 and | det(o)| = 1 imply det(oTa) = | det(a)|, hence
b ∈ ASL. Noting that (ob)†(ob) = b†b and ‖(ob) · Y ‖2 = ‖b · Y ‖2 by orthogonality
of o, we obtain both under condition (i) and under (ii) Equation (8.8) with A±SL

replaced by ASL. Moreover, the remaining parts of the proof remain valid under
this replacement.

Remark 8.2.5. Notice that condition (ii) in Theorem 8.2.3 is trivially satisfied if
A only contains matrices with positive determinant (choose o = Im), or if n is
odd. In the latter case, one can choose o(a) = sgn(det(a)) Im.

From an invariant theory perspective it is more natural to work with ASL

instead of A±SL. In this regard, condition (ii) seems unpleasant and artificial.
However, in this generality it cannot be dropped as we shall see in the next
Example 8.2.6 and in Example 9.2.9. Still, apart from these examples all Gaussian
models studied in this thesis satisfy condition (ii) and we will work with ASL

instead of A±SL. O

Example 8.2.6. Consider the involutive matrix

M :=

(
1/2 3
1/4 −1/2

)
which is not orthogonal and has determinant −1. Then

G :=
⋃
τ∈K×
{τ I2, τM} (8.9)

is a subgroup of GL2(K), which is closed under non-zero scalars. The Gaussian
group modelMg

G = {λ I2, λM
†M | λ > 0} consists of two rays in PDm(K).7 In

7The Gaussian group model is taken from [AKRS21a, Example 3.12], presented in Exam-
ple 9.3.5, and we use this model several times for illustration.
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the following we study the situation n = 1 with observed sample Y = (1, 0)T and
illustrate the differences between the real and complex situation. In particular,
we show that violating condition (ii) in the real case can prevent the replacement
of G±SL by GSL in Theorem 8.2.3.

Let K = R. Since scaling a matrix of GL2(R) by τ ∈ R× scales its determinant
with τ 2, we have GSL = {± I2} and G−SL = {±M}. Note that there is no orthog-
onal matrix o with oTM ∈ GSL, i.e., condition (ii) in Theorem 8.2.3 is violated.
Indeed, otherwise we would have oT = (oTM)M ∈ G−SL, but this contradicts that
G−SL does not contain an orthogonal matrix.

We have
‖(±M) · Y ‖2 =

1

4
+

1

16
< 1 = ‖ ± Y ‖2

and thus infg∈G±SL
‖g · Y ‖2 = 5/16 is attained on G−SL · Y , but not on GSL · Y . This

shows that we cannot replace G±SL by GSL in Theorem 8.2.3.
By Theorem 8.2.3, an MLE given Y is of the form λbTb, where b = ±M and

λ is the unique global minimum of x 7→ (5/16)x−2 log(x). Lemma 8.2.2 (ii) shows
λ = 32/5. Note that both choices of b give the same MLE, so we conclude that

λMTM =
32

5

(
5/16 11/8

11/8 37/4

)
=

(
2 44/5

44/5 296/5

)
is the unique MLE given Y .

Next, let K = C. The main difference to the real case is that we now have
GSL = {± I2,± iM} and G−SL = {±M,± i I2}. Therefore, infg∈G±SL

‖g · Y ‖2 = 5/16

is attained both on GSL · Y and on G−SL · Y . By Theorem 8.2.3 for GSL, an MLE
given Y is of the form λb†b, where b = ±iM and λ = 32/5 is the unique global
minimum of x 7→ (5/16)x− 2 log(x). Since |± i|2 = 1 and M has only real entries,
we see that λM †M = λMTM is again the unique MLE given Y . ♦
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Chapter 9

Gaussian Group Models

“Und jedem Anfang wohnt ein Zauber inne”

Hermann Hesse in his poem Stufen

Building upon the theory from Chapter 8 we study Gaussian group models
and deepen the connections between invariant theory and maximum likelihood
(ML) estimation. Recall from Definition 8.1.1 that a Gaussian group model is
a Gaussian model via symmetrization Mg

G, where G is a subgroup of GLm(K).
The group situation allows to use many further tools, especially since the group
G acts on the samples via left multiplication. In particular, we may use different
criteria for stability from Chapter 2.

We remark that the starting point of this theory were similarities between op-
erator scaling (Algorithm 3.2) from invariant theory and the flip-flop algorithm
for computing MLEs in matrix normal models (Subsection 9.4.4). This algo-
rithmic view stimulated the search for connections between invariant theory and
algebraic statistics. Eventually, this lead to a dictionary, like in Equation (1),
between stability notions and ML estimation for matrix normal models (Theo-
rem 9.4.1). That in turn fostered research on the existence of such a dictionary at
different levels of generality and/or for different assumptions. The current state
of this research for Gaussian models is presented in Chapters 8, 9 and 10.

This chapter is mainly based on [AKRS21a], which is joint work with Carlos
Améndola, Kathlén Kohn and Anna Seigal. Several results in Section 9.2 were
stimulated by discussions with my collaborators Gergely Bérczi, Eloise Hamilton,
Visu Makam and Anna Seigal, or are implicitly contained in [AKRS21a]. More-
over, Section 9.5 also takes further knowledge from [MRS21] (see Chapter 10) into
account. Finally, we note that [AKRS21a] is the companion paper of [AKRS21b],
which studies log-linear models via toric invariant theory and is presented in
Chapter 7. We will compare log-linear models and Gaussian group models at the
end of this chapter.

Main Results. First, we collect basic properties of Gaussian group models in
Propositions 9.2.1, 9.2.3 and 9.2.4. In particular, Gaussian group models are
transformation families (Definition 6.1.4), and the stabilizer of a tuple of samples
Y naturally acts on the set of MLEs given Y .

Thanks to the group structure, the conditions to work with GSL in the weak
correspondence (Theorem 8.2.3) simplify, compare Theorem 9.2.7. Remember

157
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that the weak correspondence casts maximizing the log-likelihood function as a
norm minimization problem. The latter means, in the case of a Gaussian group
model Mg

G, to compute the capacity (1.8). Moreover, the weak correspondence
yields a first dictionary between stability notions and ML estimation. We extend
this for two classes of Gaussian group models to a full list as in Equation (1).

In the first case, the group is assumed to be Zariski closed and self-adjoint,
see Theorem 9.3.6. For K = C we obtain an exact equivalence between the four
notions of stability and the four properties of ML estimation as in the dictio-
nary (1). We call this the full correspondence. If K = R one implication is
missing and we speak of the strong correspondence instead.1 Furthermore, the
natural action of the stabilizer on the set of MLEs is transitive for Zariski closed
self-adjoint groups, Proposition 9.3.3.

The second case in which we obtain the full correspondence is the situation
of Gaussian graphical models on transitive DAGs (TDAGs), see Theorem 9.5.9.
We deduce this correspondence by proving equivalences between stability notions
and linear independence conditions on the sample matrix, Theorem 9.5.8. Re-
markably, for TDAGs the stabilizer of a tuple of samples is even in bijection with
the set of MLEs, compare Proposition 9.5.10,

Applications of the Dictionary. We point out three applications of a dic-
tionary between stability notions and ML estimation. In this chapter this is
specifically showcased for matrix normal models.

First, such a dictionary may allow to obtain new characterizations and recover
known results via an invariant theory perspective. For Example, Theorem 9.4.6
and Corollaries 9.4.7 and 9.4.12 recover known results, while Theorem 9.4.14 is a
new characterization for complex matrix normal models; see Subsection 9.4.2.

Second, one can tackle questions on ML thresholds via invariant theory: the
problem of computing the three ML thresholds essentially translates to generic
semi/poly/stability, respectively. Indeed, we use descriptions of the null cone
to give improved bounds on the boundedness threshold mltb for matrix normal
models, see Theorem 9.4.10 and Corollary 9.4.11. These results were new at their
time. In the meantime, the theory from Section 9.4 was successfully used to
completely determine the ML thresholds for matrix normal models [DM21]. We
state their result in Theorem 9.6.1. In fact, this was generalized to tensor normal
models in [DMW22].

Third, the connections lead to algorithmic consequences. We can compare
scaling algorithms from invariant theory and ML estimation with each other. In
Subsection 9.4.4 we show that operator scaling (Algorithm 3.2) and the Flip-Flop
Algorithm 9.1 for matrix normal models are essentially the same. Furthermore,
we can regard the geodesically convex methods from [BFG+19] as iterative pro-
portional scaling for Gaussian group models given by Zariski closed self-adjoint
groups, see Subsection 9.3.1.

1Like the name weak correspondence, the names strong correspondence respectively full cor-
respondence where coined by Anna Seigal during discussions with Gergely Bérczi, Eloise Hamil-
ton, Visu Makam and myself.
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Organization and Assumptions. In Section 9.1 we describe how a rational
representation of an algebraic group induces a Gaussian group model, and we
state several examples of Gaussian group models. Then we collect several basic
properties and the weak correspondence in Section 9.2. Afterwards, we study the
case of Zariski closed self-adjoint groups in Section 9.3 and illustrate the theory in
detail for matrix normal models in Section 9.4. We connect Gaussian graphical
models on transitive DAGs to Gaussian group models in Section 9.5. Finally,
we discuss related literature and compare Gaussian group models with log-linear
models from Chapter 7 in Section 9.6.

As in Section 6.3 we work over K ∈ {R,C}, and (·)† denotes the Hermitian
transpose, which equals the transpose (·)T if K = R.

9.1 Models via Group Actions

Recall from Definition 8.1.1 that for K ∈ {R,C} and a subgroup G ⊆ GLm(K)
the Gaussian group model given by G is

Mg
G =

{
g†g | g ∈ G

}
⊆ PDm(K).

We have already seen in Example 8.1.4 that the saturated model PDm(K) can be
seen as a Gaussian group model in several ways, e.g., asMg

GLm(K) or asM
g

Bm(K).
Another example of a Gaussian group model is the following.

Example 9.1.1. For the group G = GTm(K) of invertible diagonal matrices
we obtain Mg

G = {Ψ ∈ PDm(K) | Ψ is diagonal}, the model of m independent
univariate Gaussians from Example 6.3.3. ♦

The group G naturally acts on the sample space Km via left-multiplication.
From an invariant theory perspective it is natural to study general group actions
and associate Gaussian group models to these. This is always possible as follows.
Let G be a group acting linearly on an m-dimensional K-vector space V , i.e., we
are given a morphism π : G→ GL(V ) of groups. After choosing an ordered basis
of V , or equivalently an isomorphism2 V ∼= Km, we can view π(G) as a subgroup
of GLm(K) and obtain a corresponding Gaussian group modelMg

π(G) ⊆ PDm(K).

Remark 9.1.2. It is important to note that statistics naturally requires a choice
how to measure data, e.g., a choice of coordinates as above. We stress that
choosing different coordinates affects the statistical meaning. Indeed, a different
isomorphism V ∼= Km gives a different inner product on V by pullback of the
standard inner product. In this regard, if V already comes with an inner product
then it is natural to choose an ordered orthonormal basis, or equivalently an
isometric isomorphism V ∼= Km.
For an illustration of this remark we refer to Example 9.3.5. O

Example 9.1.3. Let π : T → GL(V ) be a rational representation of a complex
torus. We identify T ∼= GTd(C), where d = dimT . Remember that V decomposes

2Recall that, if not mentioned otherwise, we always equip Km with the standard inner
product and the standard ordered basis (e1, . . . , em).
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into weight spaces by Theorem 1.3.14 and, as in Example 1.3.16 we can identify
V ∼= Cm such that the ej, j ∈ [m] are weight vectors. Let (a1j, . . . , adj) ∈ Zd be
the corresponding weights. Then t = diag(t1, . . . , td) ∈ GTd(C) acts on V ∼= Cm
by left multiplication with the diagonal matrix from (1.5), i.e.,

π(t) = diag
(
ta111 · · · t

ad1
d , ta121 · · · t

ad2
d , . . . , ta1m1 · · · tadmd

)
∈ GLm(C) ∼= GL(V ).

We get the Gaussian group modelMg

π(T ) = {π(t)†π(t) | t ∈ GTd(C)} ⊆ PDm(C).
If the torus T is R-split and π is defined over R, then all identifications can be
done in a way that is compatible with the R-structures. We obtain a similar
Gaussian group model over the reals: {π(t)Tπ(t) | t ∈ GTd(R)} ⊆ PDm(R). ♦

In Section 9.3 we study modelsMg
G, where G ⊆ GLm(K) is a Zariski closed

self-adjoint subgroup. Similar to the above construction, the next remark provides
a class of group actions that naturally give rise to such Gaussian group models.
Remark 9.1.4 (based on [AKRS21a, Remark 2.4]). Let G be a reductive group
over C and π : G → GL(V ) a rational representation on an m-dimensional C-
vector space. Then π(G) = π(G)C ⊆ GL(V ) is a Zariski closed subgroup by
Proposition 1.1.7, and if G and π are defined over R then π(G) is defined over R.
Hence, π(G)R ⊆ GL(VR) is a Zariski closed subgroup as well.

Since G is reductive, π is semisimple by Theorem 1.3.9 and hence π(G)K ⊆
GL(VK) is a faithful semisimple representation. Therefore, there exists an inner
product 〈·, ·〉 on VK to which π(G)K ⊆ GL(VK) is self-adjoint, by Theorem 1.3.10.
Thus, after fixing an ordered orthonormal basis with respect to 〈·, ·〉 we can view
π(G)K as a Zariski closed self-adjoint subgroup of GLm(K). We obtain a Gaussian
group modelMg

π(G)K
.

Remember that for K = R we may have π(GR)  π(G)R, see Example 1.1.8.
Still, Corollary 1.2.6 yields π(G)◦R ⊆ π(GR) ⊆ π(G)R. The polar decompositions
of π(G)R and its subgroup π(GR), Theorem 1.2.16 and Corollary 1.2.17, show
that they yield the same Gaussian group model: Mg

π(G)R
=Mg

π(GR).
3

We stress once more that the statistical meaning depends on the inner product
on V , compare Remark 9.1.2 and see Example 9.3.5 for an illustration. O

We showcase the above construction for matrix and tensor normal models.

Example 9.1.5 (Matrix and Tensor Normal Models). Consider the natural group
action of the reductive group GLm1(K)× · · · ×GLmd(K) on Km1 ⊗ · · · ⊗Kmd via
K-linear extension of

(g1, . . . , gd) · (v1 ⊗ · · · ⊗ vd) = g1(v1)⊗ · · · ⊗ gd(vd).

Recall that this is the tensor scaling action from Example 1.3.5. It induces the
Gaussian group modelMg

G given by the subgroup

G = {g1 ⊗ · · · ⊗ gd | gi ∈ GLmi(K)} ⊆ GLm1···md(K),

3In [AKRS21a, Remark 2.4] it is stated that “%(G) ⊆ GL(V ) is a closed algebraic subgroup”
giving a reference to [Mil17, Theorem 5.39] (% is called π in Remark 9.1.4). This is certainly true
over R in the scheme theoretic sense. However, we actually would like that the image of the R-
rational points of G (i.e., %(GR) respectively π(GR)) is Zariski closed in the R-rational points of
GL(V ). This fails in general as Example 1.1.8 shows. We adjusted the remark correspondingly.
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where we used the Kronecker product, see Definition 1.3.4. Note that the use
of the Kronecker product implicitly identifies Km1 ⊗ · · · ⊗ Kmd ∼= Km1···md . Un-
der this identification the group G ⊆ GLm1···md(K) is self-adjoint (with respect
to the standard inner product on Km1···md). Moreover, G is Zariski closed in
GLm1···md(K), even if K = R.4 One can deduce Zariski closedness of G for K = R
by using that Segre embeddings are surjective on R-rational points.5

With the properties of the Kronecker product we compute

(g1 ⊗ · · · ⊗ gd)†(g1 ⊗ · · · ⊗ gd) = g†1g1 ⊗ · · · ⊗ g†dgd

and see that Mg
G is the tensor normal model M⊗

K(m1, . . . ,md) from (6.12) in
Example 6.3.9. In the special case d = 2 we obtain the matrix normal model. ♦

It is convenient to study matrix normal models via the left-right action. We
introduce this viewpoint, which is used in Section 9.4, in the following example.6

Example 9.1.6 (Left-right Action and Matrix Normal Models).
The group G := GLm1(K) × GLm2(K) acts algebraically on Km1×m2 , which we
equip with the Frobenius norm, via

(g1, g2) ·m = g1MgT2 , (9.1)

where g = (g1, g2) ∈ G and M ∈ Km1×m2 . This is the left-right action from
Example 1.3.3. We stress that also for K = C the transpose gT2 (and not the
Hermitian transpose g†2) is used to get an algebraic action. Furthermore, this
allows for a natural identification via the K-linear isomorphism

Km1 ⊗Km2 ∼−→ Km1×m2 , v ⊗ w 7→ vwT (9.2)

which is induced by the K-bilinear map (v, w) 7→ vwT. Indeed, (9.2) identifies
the standard orthonormal bases ei ⊗ ej ↔ Ei,j and writing M =

∑k
i=1 viw

T
i ↔∑k

i=1 vi ⊗ wi, where vi ∈ Km1 and wi ∈ Km2 , we compute

(g1, g2) ·M =
k∑
i=1

g1viw
T
i g

T
2 =

k∑
i=1

(g1vi)(g2wi)
T ↔

k∑
i=1

g1(vi)⊗ g2(wi).

The latter shows that the identification from (9.2) is G-equivariant, where G acts
on Km1 ⊗Km2 as in Example 9.1.5. Therefore, under the identification (9.2) the
left-right action induces the matrix normal model

M⊗
K(m1,m2) =

{
Ψ1 ⊗Ψ2 | Ψj ∈ PDmj(K)

}
from Examples 6.3.9 and 9.1.5.

Finally, let us compute the log-likelihood (6.8) in terms of the Kronecker
factors Ψj. To do so, we need to isometrically identify Km1×m2 ∼= Km1 ⊗ Km2

4This may fail in general, compare Remark 9.1.4.
5Note that G is the intersection of GLm1···md

(K) with the affine cone of a Segre variety.
6In [DM21] the left-right action was used to determine the ML thresholds of matrix normal

models.



162 Chapter 9. Gaussian Group Models

with the space of column vectors Km1m2 . By Definition 1.3.4 of the Kronecker
product, there is an isomorphism vec : Km1×m2 → Km1m2 such that

∀gj ∈ GLmj(K), M ∈ Km1×m2 : vec
(
g1MgT2

)
= (g1 ⊗ g2) vec(M). (9.3)

For A,B ∈ Km1×m2 , one verifies that vec is an isometry:

tr
(
A†B

)
= vec(A)† vec(B) = tr

(
vec(A)† vec(B)

)
. (9.4)

Given a tuple of samples Y = (Y1, . . . , Yn) ∈ (Km1×m2)n, we consider the sample
covariance matrix Svec(Y ) for vec(Y ) := (vec(Y1), . . . , vec(Yn)) and compute

n tr
(
(Ψ1 ⊗Ψ2)Svec(Y )

)
= tr

(
(Ψ1 ⊗Ψ2)

n∑
i=1

vec(Yi) vec(Yi)
†
)

(9.3)
=

n∑
i=1

tr
(

vec
(
Ψ1YiΨ

T
2

)
vec(Yi)

†) (9.4)
=

n∑
i=1

tr
(
Ψ1YiΨ

T
2 Y
†
i

)
.

As a consequence, the log-likelihood (6.8) becomes

`Y (Ψ1 ⊗Ψ2) = log det(Ψ1 ⊗Ψ2)− tr
(
(Ψ1 ⊗Ψ2)Svec(Y )

)
= m2 log det(Ψ1) + m1 log det(Ψ2)− 1

n
tr

(
Ψ1

n∑
i=1

YiΨ
T
2 Y
†
i

)
.

We stress the transpose ΨT
2 for K = C, which has to be kept in mind for Algo-

rithm 9.1 over C. (Of course, ΨT
2 = Ψ2 if K = R.) ♦

Keeping the constructions of this section in mind, we work with the setting
G ⊆ GLm(K) in the next two sections.

9.2 MLEs, Stabilizers and weak Correspondence

By convention of this thesis a Gaussian modelM⊆ PDm(K) is parametrized by
its concentration matrices, i.e., the inverses of the covariance matrices. Thus, the
set of covariance matrices of a Gaussian group modelMg

G is{
(g†g)−1 = g−1(g−1)† | g ∈ G

}
=
{
hh† | h ∈ G

}
(9.5)

via the reparametrization h = g−1 ∈ G. A simple but very useful property of a
Gaussian group modelMg

G is that it admits transitive G-actions on its covariance
respectively concentration matrices.

Proposition 9.2.1. Let G ⊆ GLm(K) be a subgroup. The action of G on Km

via left multiplication induces a transitive left action on

(i) the set of covariance matrices from (9.5) via (g,Σ) 7→ gΣg†.

(ii) the set of concentration matricesMg
G via (g,Ψ) := (g−1)†Ψg−1.
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Proof. Let Y ∼ N (0,Σ) be a random vector, where Σ = hh† and h ∈ G. Then for
any g ∈ G we have g ·Y ∼ N (0, gΣg†), by Lemma 6.3.1. Hence, the left action of
G on Km induces the G-action on the set of covariance matrices given in (i). We
compute gΣg† = (gh)(gh)† and note that G→ G, g 7→ gh is surjective. Thus, the
action from part (i) is transitive. Similarly, we get an induced transitive action
on the level of concentration matrices Ψ := Σ−1, since g · Y has concentration
matrix (gΣg†)−1 = (g−1)†Ψg−1.

Remark 9.2.2. Regarding Proposition 9.2.1 we remark the following.

(a) Part (i) shows that Gaussian group models are transformation families in
the sense of [BBJJ82], compare Definition 6.1.4.

(b) Instead of the left action given in part (ii) we often consider the analogous
transitive right action onMg

G via (Ψ, g) 7→ g†Ψg. It has the same orbits as
the left action.

(c) The G-actions from Proposition 9.2.1 and part (b) are usually not free. For
example, the identity Im ∈ Mg

G is fixed by all elements in the compact
group K = {g ∈ G | g† = g−1}. Furthermore, for K = C these G-actions
are not algebraic due to the Hermitian transpose (·)†. O

In the following we study how the transitive group actions of G onMg
G relate

to ML estimation for a given tuple of samples Y ∈ (Km)n ∼= Km×n.7

Proposition 9.2.3. Let G ⊆ GLm(K) be a subgroup and consider the modelMg
G

with sample matrix Y ∈ Km×n. Fix some h ∈ G with | det(h)| = 1. Then:

(i) The supremum of `Y equals the supremum of `h·Y .

(ii) There exists an MLE given Y if and only if there exists an MLE given h ·Y .
Acting with h on Y changes the set of MLEs according to the left action of
h onMg

G from Proposition 9.2.1(ii), i.e.,

{MLEs given h · Y } = (h−1)†{MLEs given Y }h−1. (9.6)

Proof. Recall from Equation (8.4) that for any g ∈ G we have

`Y (g†g) = log
(
| det(g)|2

)
− 1

n
‖g · Y ‖2.

Since | det(h)| = 1, it holds that log
(
| det(h−1)|2

)
= 0. We compute

sup
g∈G

`Y (g†g) = sup
g∈G

log
(
| det(g)|2

)
+ log

(
| det(h−1)|2

)
− 1

n
‖g · Y ‖2

= sup
g∈G

log
(

det
(
(gh−1)†gh−1

))
− 1

n
‖(gh−1) · (h · Y )‖2

= sup
g̃∈G

log
(

det
(
g̃†g̃
))
− 1

n
‖g̃ · (h · Y )‖2 = sup

g̃∈G
`h·Y (g̃†g̃),

7Note that Equation (9.6) appears in [AKRS21a] in the proofs of Theorems 3.10 and 3.15.
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where we used the reparametrization g̃ = gh−1, equivalently g = g̃h, in the
penultimate equality. This proves (i). Moreover, the above computation shows
that g†g = h†(g̃†g̃)h is an MLE given Y if and only if g̃†g̃ = (h−1)†(g†g)h−1 is an
MLE given h · Y . This proves the second part including Equation (9.6).

In the setting of Gaussian group models it is a natural question to ask, which
role is played by group elements stabilizing Y . Given the above proposition
we study the stabilizer HY of Y under the group H := {g ∈ G | | det(g)| =
1}. Equation (9.6) for h ∈ HY shows that the right action of HY on Mg

G via
(Ψ, h) 7→ h†Ψh restricts to an action on the set of MLEs given Y . Consequently,
the set of MLEs given Y is the disjoint union of its HY -orbits. The latter is also
a consequence of the following statement.

Proposition 9.2.4. Let G ⊆ GLm(K) be a subgroup and consider the right action
(Ψ, g) 7→ g†Ψg on Mg

G. Set H := {g ∈ G | | det(g)| = 1} and fix some h ∈ HY ,
where Y ∈ Km×n is a sample matrix. Then:

∀Ψ ∈Mg
G : `Y (h†Ψh) = `Y (Ψ). (9.7)

In particular, `Y is constant on the HY -orbits ofMg
G and HY acts on the set of

MLEs given Y . The statement also holds for the subgroups (G±SL)Y and (GSL)Y
of HY .

Proof. As h ∈ HY we have h · Y = Y and | det(h)| = 1. Thus, for all g ∈ G

`Y (h†(g†g)h) = `Y ((gh)†gh) = log
(
| det(gh)|2

)
− 1

n
‖(gh) · Y ‖2

= log
(
| det(g)|2

)
+ log

(
| det(h)|2

)
− 1

n
‖g · (h · Y )‖2

= log
(
| det(g)|2

)
− 1

n
‖g · Y ‖2 = `Y (g†g).

Since any Ψ ∈ Mg
G is of the form g†g for some g ∈ G, this shows (9.7). Hence,

`Y is constant on the HY -orbits of Mg
G. Since the MLEs given Y are exactly

the Ψ̂ ∈ Mg
G with `Y (Ψ̂) = supΨ∈Mg

G
`Y (Ψ), we see that HY acts on the set of

MLEs given Y . Alternatively, this can be seen via (9.6) as discussed before this
proposition. The arguments are valid for any subgroup of HY - in particular for
(G±SL)Y and (GSL)Y .

We note that in general there may exist an MLE Ψ̂ given Y and h ∈ HY such
that h†Ψ̂h = Ψ̂. In other words, the HY -action on the set of MLEs need not to
be free, compare Example 9.4.3. Furthermore, the following example shows that
the HY -action neither needs to be transitive.

Example 9.2.5. Consider the Gaussian group modelMg
G from Example 8.2.6:

G :=
⋃
τ∈K×
{τ I2, τM} and M :=

(
1/2 3
1/4 −1/2

)
.
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Assume that the sample size n = 2 and that the sample matrix is

Y =

(
6 2
1 −1

)
.

For K = R, we have that H = G±SL = {± I2,±M}, compare Example 8.2.6. Since
M ·Y1 = Y1 andM ·Y2 = −Y2, we have HY = {I2} and ‖±Y ‖2 = ‖±M ·Y ‖2 = 42.
Therefore, all elements of the orbit G±SL · Y have the same norm. Hence by
Theorem 8.2.3, the MLEs given Y are determined by λhTh, where h ∈ G±SL and
λ = 2/21 is the unique global minimum of x 7→ 21x − 2 log(x). As M is not
orthogonal there are exactly two MLEs given Y , namely λ I2 and λMTM . Thus,
the set of MLEs given Y consists of two HY -orbits, because HY is trivial. In
particular, the HY -action is not transitive.

For K = C, H = {g ∈ G | | det(g)| = 1} = {τ I2, τM | |τ |2 = 1} is not finite.
Still, the same argument as in the real case can be used to see that HY = {I2}.
Furthermore, Theorem 8.2.3 for GSL = {± I2,±iM} yields that, again, λ I2 and
λM †M = λMTM are the MLEs given Y . Consequently, the HY -action is not
transitive. ♦

The weak correspondence, Theorem 8.2.3, holds in particular for a Gaussian
group model Mg

G, if G is closed under non-zero scalar multiples. Thanks to
the group structure of G, condition (ii) there admits the following equivalent
reformulation.

Lemma 9.2.6. Let G ⊆ GLm(R) be a subgroup that is closed under non-zero
scalar multiples. Then the following are equivalent:

• Condition (ii) from Theorem 8.2.3;

• If G contains a matrix of negative determinant, then it contains an orthog-
onal matrix of determinant −1.

Proof. If G only contains matrices of positive determinant, then condition (ii) is
trivially satisfied as we can always choose o = Im, compare Remark 8.2.5. Thus,
assume that G contains a matrix ĝ with det(ĝ) < 0.

If condition (ii) holds, then there is some orthogonal matrix o = o(ĝ) such
that det(oTĝ) > 0 and oTĝ ∈ G. The former together with det(ĝ) < 0 yields
det(o) = −1, while the latter and the group properties imply oT = oTĝĝ−1 ∈ G
and hence o = (oT)−1 ∈ G. Conversely, if there is some orthogonal o ∈ G with
det(o) = −1, then we have for all g ∈ G with det(g) < 0 that det(oTg) > 0 and
oTg = o−1g ∈ G. Therefore, condition (ii) is satisfied.

As a direct consequence of the preceding lemma and Theorem 8.2.3 we obtain
the following statement.

Theorem 9.2.7 (Weak Correspondence for Gaussian group models).
Let G ⊆ GLm(K) be a subgroup closed under non-zero scalar multiples. If K = R
and G contains an element of negative determinant, then additionally assume that
there is an orthogonal matrix in G of determinant −1. There is a correspondence
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between stability under GSL and maximum likelihood estimation in the modelMg
G

given sample matrix Y ∈ Km×n:

(a) Y unstable ⇔ likelihood `Y unbounded from above
(b) Y semistable ⇔ likelihood `Y bounded from above
(c) Y polystable ⇒ MLE exists.

The MLEs, if they exist, are the matrices λh†h, where h ∈ GSL is such that
‖h · Y ‖ > 0 is minimal in GSL · Y and λ ∈ R>0 is the unique global minimum of

R>0 → R, x 7→ x

n
‖h · Y ‖2 −m log(x).

We have already seen in Example 8.2.6 that, in general, we cannot drop the
additional assumption of Theorem 9.2.7 if K = R. In [AKRS21a] a different,
perhaps more interesting example is given to show this fact. In the following we
present this example [AKRS21a, Example 3.5] in detail. For M ∈ R2×2, define

g(M) :=

M S1MS−1
1

S2MS−1
2

 , where S1 =

(
1 2
2 1

)
, S2 =

(
1 0
0 2

)
(9.8)

and set G := {τg(M) |M ∈ O2(R), τ ∈ R×}.

Lemma 9.2.8. G is a subgroup of GL6(R), which contains no orthogonal matrix
of determinant −1.

Proof. First, G is a subgroup, because(
τ1g(M1)

)−1(
τ2g(M2)

)
= (τ−1

1 τ2)g(MT
1 M2) ∈ G

for all τ1, τ2 ∈ R× and all M1,M2 ∈ O2(R).
Second, for a proof by contradiction assume that there are τ ∈ R× and M ∈

O2(R) such that τg(M) ∈ O6(R) and det(τg(M)) = τ 6 det(M)3 = −1. Then
|τ |6| det(M)|3 = |τ |6 = 1 as | det(M)| = 1. Hence, τ ∈ {−1, 1} and so τ 6 = 1.
Thus, we must have det(M) = −1 and therefore we can write

M =

(
a b
b −a

)
for some a, b ∈ R with a2 + b2 = 1.

Since τg(M) is orthogonal, we have τ 2g(M)Tg(M) = g(MT)g(M) = I6. In
particular, for i = 1, 2 we obtain

I2 =
(
SiMS−1

i

)T(
SiMS−1

i

)
=
(
S−1
i MSi

)(
SiMS−1

i

)
,

where we used in the second equality that Si, S−1
i andM are symmetric. If i = 2,

then the above equation specializes to

I2 =

(
a 2b

1/2b −a

)(
a 1/2b
2b −a

)
.
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The upper left entry computes as 1 = a2 + 4b2 and we deduce b = 0 using
1 = a2 + b2. Now, for i = 1 we get

I2 =
1

9

(
5a 4a
−4a −5a

)(
5a −4a
4a −5a

)
and the upper right entry is 0 = −(41/9)a2, which contradicts a2 = 1.

Example 9.2.9 ([AKRS21a, Example 3.5]). Consider

G :=
{
τg(M) |M ∈ O2(R), τ ∈ R×

}
,

where g(M) is defined as in Equation (9.8). Then G is a subgroup of GL6(R)
that contains no orthogonal matrix of determinant −1, see Lemma 9.2.8. For the
Gaussian group modelMg

G consider the tuple of four samples given by

Y =



0 0 0 0
0 0 0 0
2 0 0 0

0 2
√

2 0 0

0 0 0 2
√

5

0 0 6
√

5
5

8
√

5
5

 , with SY =
1

4

4∑
i=1

YiY
T
i =

0 0 0
0 S2 0
0 0 S2

1

 .

By Equation (8.8), the supremum of `Y can be computed as a double infimum.
The inner infimum infh∈G±SL

‖h · Y ‖2 can be rewritten as minimizing the trace
tr(gTgSY ) over matrices g ∈ G±SL, by (8.3):

inf
h∈G±SL

‖h · Y ‖2 = 4 · inf
M∈O2(R)

[
tr
(
(S1MS−1

1 )T(S1MS−1
1 )S2

)
+ tr

(
(S2MS−1

2 )T(S2MS−1
2 )S2

1

) ]
.

We can parametrize the 2 × 2 special orthogonal matrices by P and the 2 × 2
orthogonal matrices of determinant −1 by Q where

P =

[
a b
−b a

]
, Q =

[
−a −b
−b a

]
, with a, b ∈ R, and a2 + b2 = 1.

Then the minimization problems over GSL and G−SL can be rewritten as

inf
h∈GSL

1

4
‖h · Y ‖2 = min

a2+b2=1

(
13a2 − 44

3
ab+

419

12
b2

)
,

inf
h∈G−SL

1

4
‖h · Y ‖2 = min

a2+b2=1

(
71

3
a2 − 28

3
ab+

97

4
b2

)
.

We point out that the minimum is justified by compactness of the unit circle.
Note that 0 ≤ (a− b)2 implies ab ≤ (1/2)(a2 + b2) = 1/2, equivalently −ab ≥ −1/2.
Thus, substituting b2 = 1− a2 in the latter minimum, we see that

71

3
a2 +

97

4
(1− a2)− 28

3
ab ≥ 97

4
+

(
71

3
− 97

4

)
a2 − 28

3
· 1

2

≥ 97

4
+

(
71

3
− 97

4

)
− 28

3
· 1

2
= 19,
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where we used 71/3 − 97/4 < 0 with a2 ≤ 1 in the second inequality. In contrast,
setting a = 1 and b = 0 in the former minimum gives a value of 13. Hence,
infh∈GSL

‖h · Y ‖2 < infh∈G−SL
‖h · Y ‖2. Multiplying Y by a fixed matrix in G−SL

gives a tuple of samples where the strict inequality is reversed, and the infimum
is witnessed only at the component G−SL. Altogether, this example shows that
the extra condition for K = R in Theorem 9.2.7, equivalently condition (ii) of
Theorem 8.2.3, cannot be dropped. ♦

9.3 Self-adjoint Zariski closed groups

In this section we study Gaussian group models Mg
G with Zariski closed and

self-adjoint8 subgroup G ⊆ GLm(K). Such models arise naturally from rational
representations of reductive groups, compare Remark 9.1.4. We have already
seen Gaussian group models with Zariski closed self-adjoint subgroup in Exam-
ples 9.1.1, 9.1.3, 9.1.5 and 9.1.6.

We stress that the assumptions are properties of the parametrizing subgroup,
not the model itself. For example, the saturated model PDm(K) is induced by the
Zariski closed self-adjoint group GLm(K). On the other hand, PDm(K) =Mg

Bm(K)

and the group Bm(K) of invertible upper triangular matrices is not self-adjoint.
Let us start our study with a simple observation. If G is self-adjoint then

Mg
G = {g†g | g ∈ G} = {hh† | h ∈ G}

using the reparametrization h = g† ∈ G. Statistically this equality means that
the set of concentration matrices Mg

G is equal to the set of covariance matrices
of the modelMg

G, compare Equation (9.5).
Next, we reformulate Theorem 1.2.18 to illustrate what the assumption “Zariski

closed and self-adjoint” on G means geometrically for the modelMg
G.

Theorem 9.3.1. Let G ⊆ GLm(K) be a Zariski closed self-adjoint subgroup.
Then the Gaussian group modelMg

G is a totally geodesic submanifold of PDm(K).
Moreover, Mg

G is a CAT(0)-symmetric space and equal to G ∩ PDm(K). In
particular,Mg

G is Euclidean closed in PDm(K).
Conversely, if M ⊆ PDm(K) is a totally geodesic submanifold with Im ∈ M,

thenM =Mg
G for a Euclidean closed self-adjoint subgroup G ⊆ GLm(K).

As a consequence of these strong geometric properties and Example 1.2.21
the negative of the log-likelihood is a geodesically convex function onMg

G. This
was observed for matrix normal models in [Wie12]. Geodesic convexity has been
used with great benefit for matrix and tensor normal models in [FORW21], see
Subsection 9.6.1.

SinceMg
G is closed in PDm(K) if G is Zariski closed and self-adjoint, it does

not make sense to speak of extended MLEs ofMg
G, compare Remark 6.3.4.

The following lemma ensures that the additional assumption forK = R needed
in Theorem 9.2.7 is satisfied, if G ⊆ GLm(R) is Zariski closed and self-adjoint.

8We recall that self-adjoint means that for all g ∈ G one also has g† ∈ G.
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Lemma 9.3.2 ([AKRS21a, Lemma 3.8]). Let G ⊆ GLm(R) be a Zariski closed
self-adjoint group, closed under non-zero scalar multiples. If there is an element
of G with negative determinant, then G contains an orthogonal matrix of deter-
minant −1. In particular, the weak correspondence, Theorem 8.2.3 respectively
Theorem 9.2.7, holds for GSL.

Proof. Pick g ∈ G with det(g) < 0. Since G is Zariski closed and self-adjoint, the
polar decomposition can be carried out in G, by Theorem 1.2.16. In particular,
there is an orthogonal o ∈ G and a positive definite p ∈ G such that g = op.
Then det(g) < 0 implies det(o) < 0, i.e., det(o) = −1.

In general, the right action of (GSL)Y from Proposition 9.2.4 on the set of
MLEs given Y needs not to be transitive, see Example 9.2.5. However, in the
case of self-adjoint groups we have the following sufficient criterion.

Proposition 9.3.3 ([AKRS21a, Propositions 3.9 and 3.14]). Let G ⊆ GLm(K)
be a Zariski closed self-adjoint subgroup which is closed under non-zero scalar
multiples. Consider the modelMg

G with tuple of samples Y ∈ (Km)n. If Ψ̂ is an
MLE given Y , then

{MLEs given Y } =
{
g†Ψ̂g | g ∈ (GSL)Y

}
, (9.9)

i.e., the action of (GSL)Y from Proposition 9.2.4 on the set of MLEs given Y is
transitive.

Proof. The weak correspondence, Theorem 9.2.7, holds for GSL by Lemma 9.3.2.
Hence, Ψ̂ = λĥ†ĥ and any other MLE given Y is of the form λ(h′)†h′, where λ > 0
is uniquely determined and ĥ, h′ ∈ GSL satisfy

‖h′ · Y ‖2 = inf
h∈GSL

‖h · Y ‖2 = ‖ĥ · Y ‖2. (9.10)

GSL ⊆ GLm(K) is Zariski closed and self-adjoint, because G is. Moreover, for
K = {g ∈ G | g†g = Im} the matrices in K ∩ GSL act isometrically on Km×n.
Therefore, we can apply Kempf-Ness, Theorem 2.2.13(b), to Equation (9.10) and
obtain some k ∈ K ∩GSL with k · (ĥ ·Y ) = h′ ·Y . Thus, g := ĥ−1 k−1 h′ ∈ (GSL)Y
and using h′ = kĥg we deduce λ(h′)†h′ = g†(λĥ†ĥ)g = g†Ψ̂g.

The following statement is implicitly contained in the proof of [AKRS21a,
Theorems 3.10 and 3.15]. Part (i) is explicitly stated and proven in [DMW22,
Corollary 2.5].

Proposition 9.3.4. Let G ⊆ GLm(K) be a Zariski closed self-adjoint subgroup,
which is closed under non-zero scalar multiples. Assume that the tuple of samples
Y ∈ (Km)n has an MLE in the modelMg

G. Then:

(i) If Y has a unique MLE, then the stabilizer (GSL)Y is compact.

(ii) Y has either a unique MLE or infinitely many MLEs.
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Proof. Since Y has an MLE inMg
G, there is some h ∈ GSL such that h · Y is of

minimal norm in GSL ·Y , by Theorem 9.2.7. Then also h ·Y has an MLE inMg
G,

using Proposition 9.2.3(ii), and by Equation (9.6) the set of MLEs given Y has
the same cardinality as the set of MLEs given h · Y . Moreover, for stabilizers it
holds that (GSL)h·Y = h(GSL)Y h

−1. As conjugation via h is a homeomorphism
we deduce that (GSL)Y is compact if and only if (GSL)h·Y is compact. Altogether,
we argued that, after replacing Y by h · Y , we can assume that Y is of minimal
norm in its GSL-orbit.

Now, if Y is of minimal norm in GSL · Y , then λ Im is an MLE given Y using
Theorem 9.2.7. Proposition 9.3.3 yields that

{MLEs given Y } = {λg†g | g ∈ (GSL)Y }. (9.11)

Thus, λ Im is the unique MLE given Y if and only if (GSL)Y ⊆ K = {g ∈ G |
g†g = Im}. If (GSL)Y ⊆ K, then (GSL)Y is compact as it is Euclidean (even
Zariski) closed in the compact group K. This shows part (i).

On the other hand, assume there is another MLE λg†g, g ∈ (GSL)Y , with
g†g 6= Im. The positive definite matrix g†g admits a decomposition udu†, where
u, d ∈ GLm(K) such that u−1 = u† and d is diagonal with real positive entries.
At least one of the positive diagonal entries of d is not equal to one, as g†g 6= Im.
This implies that {dN | N ∈ Z} is an infinite cyclic group. Consequently, the
set {(g†g)2N | N ∈ Z} is infinite. Since G is Zariski closed and self-adjoint, also
GSL is, and K ∩ GSL acts isometrically. Hence, Lemma 2.2.16 yields that the
stabilizer (GSL)Y is self-adjoint as Y is of minimal norm in GSL · Y . Thus, for
any g ∈ (GSL)Y we have g† ∈ (GSL)Y and hence (g†g)N ∈ (GSL)Y for all N ∈ Z.
Finally, we get infinitely many MLEs

λ
(
(g†g)N

)†
(g†g)N = λ(g†g)N(g†g)N = λ(g†g)2N , N ∈ Z

by (9.11), which ends the proof of part (ii).

We stress the importance of G being self-adjoint to ensure part (ii) of Propo-
sition 9.3.4. This assumption is needed to conclude that the MLE is unique from
the fact that there are finitely many MLEs. Indeed, the following example ex-
hibits a reductive group G, closed under non-zero scalar multiples, and a sample
Y with a finite number of MLEs inMg

G, but not a unique MLE.

Example 9.3.5 ([AKRS21a, Example 3.12]). Recall the Gaussian group model
Mg

G from Examples 8.2.6 and 9.2.5:

G :=
⋃
τ∈K×
{τ I2, τM} and M :=

(
1/2 3
1/4 −1/2

)
.

Assume we have a single sample Y = (6, 1)T ∈ Km. Remember that we have
G±SL = {± I2,±M} if K = R and G±SL = {± I2,± i I2,±M,± iM} if K = C,
compare Example 8.2.6. The MLEs of Y are λh†h, where λ > 0 is uniquely
determined and h ∈ G±SL minimizes the norm ‖h ·Y ‖ in G±SL ·Y , by Theorem 8.2.3.
Since M · Y = Y , we see that all elements in G±SL · Y have the same norm and
that there are exactly two MLEs given Y , namely λ I2 and λM †M = λMTM .
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Note that the groupG is reductive: it is the direct product ofK× and the cyclic
group {I2,M}. Therefore, there exists an inner product 〈·, ·〉, on Km such that G
is self-adjoint with respect to 〈·, ·〉, see Theorem 1.3.10. Hence, Proposition 9.3.4
holds for G and (Km, 〈·, ·〉). In particular, Y has a unique MLE. We stress that
the statistical meaning has changed as the log-likelihood is now computed with
respect to a different norm: note that 〈·, ·〉 is not the standard inner product.
This illustrates the general Remarks 9.1.2 and 9.1.4. ♦

The weak correspondence, Theorem 9.2.7, gives a first dictionary between
stability notions of GSL and ML estimation for the Gaussian group modelMg

G.
We can enlarge this dictionary, if the group G ⊆ GLm(K) is additionally Zariski
closed and self-adjoint. If K = C we obtain a list of four equivalences in Theo-
rem 9.3.6(a)–(d), which we call the full correspondence. If K = R the converse
of Theorem 9.3.6(d) does not hold in general, compare Example 9.4.3 from the
next section, and we speak instead of the strong correspondence.9

Theorem 9.3.6 ([AKRS21a, Theorems 3.10 and 3.15]).
Let Y ∈ (Km)n be a tuple of samples, and G ⊆ GLm(K) a Zariski closed self-
adjoint group that is closed under non-zero scalar multiples. The stability under
the action of GSL on (Km)n is related to ML estimation for the Gaussian group
modelMg

G as follows.

(a) Y unstable ⇔ `Y not bounded from above
(b) Y semistable ⇔ `Y bounded from above
(c) Y polystable ⇔ MLE exists
(d) Y stable ⇒ unique MLE exists

If K = C, then equivalence holds in (d).

Proof. By Lemma 9.3.2 the weak correspondence holds forGSL, see Theorem 9.2.7.
Thus, parts (a), (b) and the forward direction of (c) hold. To prove the converse
of (c), assume that there is an MLE given Y . By Theorem 9.2.7, this MLE is of
the form λh†h for some h ∈ GSL such that ‖h · Y ‖ > 0 is minimal in GSL · Y .
Hence, Y 6= 0 and Kempf-Ness, Theorem 2.2.13, implies that GSL ·Y is Euclidean
closed, i.e., Y is polystable. Note that we can apply Kempf-Ness as GSL is Zariski
closed and self-adjoint, because G is.

If Y is stable, then there is at least one MLE given Y , by part (c), and (GSL)Y
is finite. The latter and Equation (9.9) imply that there are finitely many MLEs
given Y . Hence, Y has a unique MLE, by Proposition 9.3.4(ii). This shows
the implication in (d). Finally, assume K = C and that there is a unique MLE
given Y . By Proposition 9.3.4(i), the stabilizer (GSL)Y ⊆ Cm×m is compact,
but it is also Zariski-closed in GLm(C) (defined by the equations of G and the
equations g · Y = Y ). Thus, (GSL)Y is a complex affine variety that is compact,
hence it must be finite. Furthermore, Y is polystable by part (c). We conclude
that Y is stable, which ends the proof.

9Like the name weak correspondence, the names strong correspondence respectively full cor-
respondence where coined by Anna Seigal during discussions with Gergely Bérczi, Eloise Hamil-
ton, Visu Makam and myself.
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Remark 9.3.7 (based on [AKRS21a, Remark 3.11]). Let G ⊆ GLm(K) be a Zariski
closed self-adjoint group that is closed under non-zero scalar multiples. We argue
that the results in Theorems 9.2.7 and 9.3.6, and in Propositions 9.3.3 and 9.3.4
are unchanged if we replace GSL by its Euclidean identity component G◦SL. First,
the stability notions under both groups coincide, by Proposition 2.2.17. Second,
by the latter proposition any h ∈ GSL is of the form h = kh′ for some k ∈
K, h′ ∈ G◦SL. Therefore, capGSL

(Y ) = capG◦SL(Y ) and as h†h = (h′)†k†kh′ =

(h′)†h′ we do not loose any MLEs (if they exist) when replacing GSL by G◦SL.
Third, we can apply Kempf-Ness also to G◦, compare Theorem 2.2.13, and deduce
Proposition 9.3.3 similarly. Finally, one can verify that (GSL)Y is compact if and
only if (G◦SL)Y is. Altogether, this shows the claim.

In fact, we can also replace GSL by any Zariski closed self-adjoint subgroup
H of G that satisfies H◦ = G◦SL, because we can repeat the above argument for
H and H◦ = G◦SL. We may not have such choices for groups that are not Zariski
closed and self-adjoint, see Examples 8.2.6 and 9.2.9. O

We illustrate how Theorem 9.3.6 can be used to recover standard knowledge
on the saturated Gaussian model PDm(K) from Example 6.3.8.

Example 9.3.8. The groupG = GLm(K) is Zariski closed, self-adjoint and closed
under non-zero scalar multiples. Therefore, we can use Theorem 9.3.6 to study
ML estimation for the saturated modelMg

G = PDm(K). We have already studied
the action of GSL = SLm(K) on Km×n via left multiplication in Example 1.4.4.
There we have seen that any Y is unstable if n < m. Thus, for all Y the log-
likelihood `Y is not bounded from above if n < m, by Theorem 9.3.6(a). On
the other hand, if n ≥ m then Y is stable if and only if Y has full row rank,
and it is unstable otherwise. Thus, for n ≥ m almost all Y are stable and have
a unique MLE by Theorem 9.3.6(d). Altogether, this recovers the results from
Example 6.3.8 on ML thresholds:

mltb(Mg
G) = mlte(Mg

G) = mltu(Mg
G) = m.

Now, let n ≥ m. The above shows that there exists an MLE given Y (which is
then unique) if and only if Y has full row rank. The latter is equivalent to the
sample covariance matrix

SY =
1

n

n∑
i=1

YiY
†
i =

1

n
Y Y † ∈ Km×m

being invertible. Remember from Example 6.3.8 that the MLE given Y , if it
exists, is S−1

Y . We deduce this from the weak correspondence, Theorem 9.2.7. For
this, fix a sample matrix Y such that SY is invertible. Recall from Example 2.2.15
that for M := Y Y † = nSY and h := det(M)1/(2m)M−1/2 ∈ SLm(K) we have

γ := capSLm(K)(Y ) = ‖h · Y ‖2 = m det(M)1/m.

Therefore, Theorem 9.2.7 yields that λh†h is the MLE given Y where λ minimizes
x 7→ γ

n
x−m log(x). Lemma 8.2.2(ii) shows that λ = mn/γ and hence

λh†h =
mn

m det(M)1/m
det(M)1/mM−1 = n(nSY )−1 = S−1

Y

is the MLE given Y . ♦
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9.3.1 Algorithmic Implications

In the following we discuss algorithmic consequences of Theorem 9.3.6. Scaling
algorithms are iterative algorithms existing both in statistics and in invariant the-
ory. We already discussed scaling algorithms for computational invariant theory
in detail, compare Section 3.2. In statistics one usually refers to scaling algorithms
as iterative proportional scaling (IPS)10.

In Section 7.3, we drew a connection between norm minimization in invariant
theory and IPS for log-linear models, also see Figure 7.1. The starting point
of this figure is Sinkhorn scaling, an alternating minimization method. On the
statistical side, it can be seen as an instance of IPS for the independence model,
which generalizes to IPS for any log-linear model. On the invariant theory side
it generalizes to norm minimization under a torus action.

GLm1 ×GLm2 G

operator scaling

flip-flop algorithm

norm minimization

IPS for Gaussian group models

Left-right action General group action

Invariant Theory:

Statistics:

Figure 9.1: [AKRS21a, Figure 1] Overview of different scaling algorithms.
For the invariant theory algorithms, we use matrices of determinant one, e.g.
SLm1 × SLm2 ⊆ GLm1 ×GLm2 .

A Gaussian analogue of Figure 7.1 is given in Figure 9.1. Namely, the
idea of Sinkhorn scaling generalizes to operator scaling (Algorithm 3.2, [Gur04a;
GGOW16]) from invariant theory respectively to the flip-flop algorithm (Algo-
rithm 9.1, [Dut99; LZ05]); see the left of Figure 9.1. In Subsection 9.4.4 below
we show that these methods are essentially equivalent. Furthermore, the flip-flop
algorithm can be thought of as an instance of IPS [FM81; Cra98].

For complex Gaussian group models Mg
G with G ⊆ GLm(C) Zariski closed

and self-adjoint, we can use the geodesically convex first and second order meth-
ods from [BFG+19] to solve Norm Minimization 3.1.3 respectively the Scaling
Problem 3.1.4.11 These algorithms can be thought of as generalizations of oper-
ator scaling. Altogether, the above discussion and the comparison of Figures 7.1
and 9.1 motivates to regard these geodesically convex methods as IPS for Gaus-
sian group models (where G is Zariski closed and self-adjoint).

10also called iterative proportional fitting (IPF)
11Note that [BFG+19] requires that G is Zariski closed and self-adjoint. Moreover, without

this assumption we do not have a moment map and hence cannot consider the scaling problem.
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Remark 9.3.9 (Algorithms for real Gaussian group models). In invariant theory
scaling algorithms are usually designed over C and they minimize the norm over
the complex orbit. However, often each update is defined over R if the input is
real, and hence these can also be used for real Gaussian group models with G
being Zariski closed and self-adjoint. This crucially uses that in this situation the
capacity over R equals the one over C, compare Proposition 2.2.18.

For example, the alternating minimization method for operator and tensor
scaling from [BGO+18] always stays over R if the input is real. The same applies
to the first order method from [BFG+19]. O

9.4 Applications to Matrix Normal Models

In this section we illustrate how to apply the theory from Section 9.3 to study
matrix normal models. Recall from Example 6.3.9 that a matrix normal model is
a sub-model of PDm1m2(K) whose concentration matrices factor as a Kronecker
product:

M⊗
K(m1,m2) =

{
Ψ1 ⊗Ψ2 | Ψj ∈ PDmj(K)

}
.

Moreover, recall from Example 9.1.6 that the log-likelihood (6.8) computes as

`Y (Ψ1⊗Ψ2) = m2 log det(Ψ1)+ m1 log det(Ψ2)− 1

n
tr

(
Ψ1

n∑
i=1

YiΨ
T
2 Y
†
i

)
. (9.12)

An MLE is a concentration matrix Ψ̂1 ⊗ Ψ̂2 ∈ M⊗
K(m1,m2) that maximizes the

log-likelihood function.

9.4.1 Relating norm minimization to ML estimation

In the following we study matrix normal models using the left-right action of
GLm1(K)×GLm2(K) on (Km1×m2)n. Remember that the action12 is given by

g · Y :=
(
g1Y1g

T
2 , . . . , g1Yng

T
2

)
, (9.13)

where g = (g1, g2) ∈ GLm1(K)×GLm2(K) and Y = (Y1, . . . , Yn) ∈ (Km1×m2)n. We
have seen in Example 9.1.6 that for n = 1 this algebraic action, after appropriate
identification, induces the rational representation

% : GLm1(K)×GLm2(K)→ GLm1m2(K), (g1, g2) 7→ g1 ⊗ g2.

Hence, for G := %
(

GLm1(K)×GLm2(K)
)
we obtainMg

G =M⊗
K(m1,m2), the ma-

trix normal model. The subgroup G ⊆ GLm1m2(K) is Zariski closed,13 self-adjoint
and closed under non-zero scalar multiples. Thus, the results from Section 9.3

12We note that the transposes in (9.13) are also used in the complex case to ensure an algebraic
action, compare Example 9.1.6.

13This is even true over R: if gj ∈ GLmj
(C) such that g1⊗ g2 ∈ GLm1m2

(R), then there exist
hj ∈ Rmj×mj with h1 ⊗ h2 = g1 ⊗ g2. The latter uses that Segre embeddings are surjective on
R-points. Now, 0 6= det(g1 ⊗ g2) = det(h1 ⊗ h2) = (deth1)m2(deth2)m1 yields det(hj) 6= 0.
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apply to the action of GSL. However, it is possible and more convenient to directly
work with the left-right action of SLm1(K) × SLm2(K). The following theorem
makes this precise.

Theorem 9.4.1 (Strong/Full Correspondence, [AKRS21a, Theorem 4.1]).
Let Y ∈ (Km1×m2)n be a matrix tuple. The supremum of the log-likelihood `Y
in (9.12) overM⊗

K(m1,m2) is given by the double infimum

− inf
x∈R>0

(
x

n

(
inf

h∈SLm1 (K)×SLm2 (K)
‖h · Y ‖2

)
−m1m2 log(x)

)
. (9.14)

The MLEs given Y , if they exist, are the matrices of the form λh†1h1⊗h†2h2, where
h = (h1, h2) minimizes ‖h ·Y ‖ under the left-right action of SLm1(K)×SLm2(K),
and λ ∈ R>0 is the unique value that minimizes the outer infimum.

If λh†1h1 ⊗ h†2h2 is an MLE, then every (g1, g2) in the SLm1(K) × SLm2(K)
stabilizer of Y yields an MLE via

(g1 ⊗ g2)†
(
λh†1h1 ⊗ h†2h2

)
(g1 ⊗ g2) = λ

(
g†1h

†
1h1g1

)
⊗
(
g†2h

†
2h2g2

)
and, conversely, every MLE given Y is of this form.

The stability under the left-right action of SLm1(K) × SLm2(K) is related to
ML estimation via:

(a) Y unstable ⇔ `Y not bounded from above
(b) Y semistable ⇔ `Y bounded from above
(c) Y polystable ⇔ MLE exists
(d) Y stable ⇒ MLE exists uniquely

If K = C, then equivalence holds in (d).

Proof. The proof uses the notation introduced above. Since SLm1(K)× SLm2(K)
is Euclidean connected, also H := %(SLm1(K) × SLm2(K)) ⊆ G is Euclidean
connected. In fact, it is the Euclidean identity component of GSL: for K = C
the group H is Zariski closed by Proposition 1.1.7, and one verifies H = GSL.
If K = R, one may have H  GSL,14 but still Corollary 1.2.6 applies and yields
H = G◦SL.15 Thus Theorem 9.2.7, Proposition 9.3.3 and Theorem 9.3.6 apply to
H as well, by Remark 9.3.7. Furthermore, when restricted to SLm1(K)×SLm2(K)
the kernel of % is finite. Hence, the stability notions in Definition 1.4.1(a)–(d)
coincide for SLm1(K) × SLm2(K) and H, compare Remark 1.4.2. Thus, we can
consider SLm1(K)× SLm2(K) instead of its image H under %.

Remark 9.4.2. Example 9.1.5 shows that the tensor scaling action (Example 1.3.5)
of GLm1(K)× · · · ×GLmd(K) on Km1 ⊗ · · · ⊗Kmd gives the tensor normal model
M⊗

K(m1, . . . ,md). Analogous arguments as for matrix normal models show that
a similar version of Theorem 9.4.1 forM⊗

K(m1, . . . ,md) holds via restricting the
tensor scaling action to SLm1(K)× · · · × SLmd(K). O

14This happens, e.g., if m1 = m2 = 2: one verifies that diag(−1, 1)⊗ diag(−1, 1) ∈ GSL\H.
15The corresponding proof in [AKRS21a] states that H is Zariski closed over R. This might

not be true, given Example 1.1.8 and the fact that we may have H  GSL for K = R. Therefore,
we adjusted the argument.
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Over the complex numbers, the converse of Theorem 9.4.1(d) also holds. How-
ever, over the reals there exist matrix tuples Y with a unique MLE but an infinite
stabilizer, as the following example shows.

Example 9.4.3 ([AKRS21a, Example 4.2]). Set m1 = m2 = n = 2 and take
Y ∈ (R2×2)2, where

Y1 =

(
1 0
0 1

)
, Y2 =

(
0 −1
1 0

)
.

We prove that over the reals the MLE given Y is unique although the stabilizer
of Y is infinite. In contrast, Y has infinitely many MLEs for the complex matrix
normal model.

First, we show that Y is polystable under the left-right action of SL2(K) ×
SL2(K), where K ∈ {R,C}. Note that any matrix in SL2(K) has Frobenius norm
at least

√
2. Indeed, if σ1 and σ2 are the singular values of g ∈ SL2(K), then

‖g‖2 = σ2
1 + σ2

2, where σ1σ2 = 1. By the arithmetic mean - geometric mean
inequality, we have ‖g‖2 ≥ 2. Therefore, Y1 and Y2 have minimal Frobenius
norm in SL2(K) and thus Y is of minimal norm in its orbit. By Kempf-Ness,
Theorem 2.2.13(d), the matrix tuple Y is polystable and hence an MLE given Y
exists.

Next we compute the stabilizer of Y . It consists of matrices (g1, g2) ∈ SL2(K)×
SL2(K) with g1Yig

T
2 = Yi. For Y1, this gives g1g

T
2 = I2, i.e., gT2 = g−1

1 . From Y2,
we obtain g1Y2 = Y2g1 and writing

g1 =

(
a b
c d

)
we get g1Y2 =

(
b −a
d −c

)
=

(
−c −d
a b

)
= Y2g1.

We deduce a = d, b = −c and det(g1) = 1 = a2 + b2. This proves g1 ∈ SO2(K)
and hence g2 = g−T1 = g1. Thus, the stabilizer of Y is contained in the infinite
set {(g, g) | g ∈ SO2(K)}. In fact, we have equality as SO2(K) is commutative
and Y1, Y2 ∈ SO2(K).

Since Y is of minimal norm in its orbit, λ I2⊗ I2 is an MLE by Theorem 9.4.1,
where λ > 0 minimizes the outer infimum in (9.14). For K = R, transpose and
Hermitian transpose agree. Thus, any other MLE is given as λgT I2 g ⊗ gT I2 g
by some g ∈ SO2(R), where we used the description of the stabilizer of Y . Since
gTg = I2 we see that Y has unique MLE λ I2⊗ I2. Note that the stabilizer
{(g, g) | g ∈ SO2(R)} of Y is indeed compact as predicted by Proposition 9.3.4.

For K = C, the MLEs involve g†g rather than gTg, hence from the complex
stabilizer {(g, g) | g ∈ SO2(C)} we obtain infinitely many MLEs. ♦

The next example shows that all stability conditions in Theorem 9.4.1(a)–(d)
can occur.

Example 9.4.4 ([AKRS21a, Example 4.3]). We set m1 = m2 = 2, and study
stability under SL2(K)× SL2(K) on (K2×2)n. We use the matrices

Y1 =

(
1 0
0 1

)
, Y2 =

(
0 −1
1 0

)
, Y3 =

(
0 1
1 0

)
, Y4 =

(
0 1
0 0

)
.
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(a) The matrix Y4 is unstable and the matrix tuple (Y4, Y4) is unstable as well.

(b) The orbit of (Y1, Y4) is contained in {(g,M) | g ∈ SL2(K), M 6= 0}. In
particular, (Y1, Y4) is semistable as SL2(K) is Euclidean closed. Moreover,
for any g ∈ SL2(K) and M ∈ K2×2 \ {0} we have

‖(g,M)‖2 = ‖g‖2 + ‖M‖2 ≥ 2 + ‖M‖2 > 2,

where we used ‖g‖2 ≥ 2, see Example 9.4.3. On the other hand, we have((
ε 0
0 ε−1

)
,

(
ε−1 0
0 ε

))
· (Y1, Y4) =

((
1 0
0 1

)
,

(
0 ε2

0 0

))
,

which tends to (Y1, 0) as ε→ 0. Since ‖(Y1, 0)‖2 = 2 the capacity of (Y1, Y4)
is not attained by an element in the orbit of (Y1, Y4), and Y is not polystable.

(c) The matrix Y1 = I2 is polystable by Kempf-Ness, Theorem 2.2.13(d), as it
is an SL2(K) matrix of minimal norm. An MLE is given by λ I2⊗ I2, where
λ is the minimizer of the outer infimum in (9.14). Furthermore, Y1 is not
stable, because its stabilizer is {(g, g−T) | g ∈ SL2(K)}. There are infinitely
many MLEs given Y of the form λgTg ⊗ g−1g−T for g ∈ SL2(K).

(d) We show that Y = (Y1, Y2, Y3) is stable. First, any tuple (M1,M2,M3) in
the orbit of Y satisfies M1,M2 ∈ SL2(K) and det(M3) = −1. Any 2 × 2
matrix of determinant ±1 has Frobenius norm at least

√
2, by the same

argument as in Example 9.4.3. Therefore, Y is of minimal norm in its
orbit, and hence polystable by Theorem 2.2.13(d). It remains to show that
the stabilizer of Y is finite. The discussion from Example 9.4.3 ensures that
the stabilizer of Y is contained in {(g, g) | g ∈ SO2(K)}. Given g ∈ SO2(K),
the condition gY3g

T = Y3 is equivalent to gY3 = Y3g. There exist a, b ∈ K
with a2 + b2 = 1 such that

g =

(
a b
−b a

)
and we compute gY3 =

(
b a
a −b

)
=

(
−b a
a b

)
= Y3g.

Therefore, b = −b which implies b = 0 and a2 = 1. We see that gY3 = Y3g
for g ∈ SO2(K) holds if and only if g = ± I2. Therefore, the stabilizer of Y
is the finite set {(I2, I2), (− I2,− I2)}. Altogether, Y is stable and there is a
unique MLE given Y , namely λ′ I2⊗ I2 where λ′ > 0 is the unique minimizer
of the outer infimum in (9.14). ♦

9.4.2 Boundedness of the likelihood via semistability

This subsection16 illustrates how the dictionary between ML estimation and sta-
bility notions can be used to gain new insights and to recover known results
on the statistical side. More specifically, we use the equivalence of a bounded

16Like the whole Section 9.4 also this subsection closely follows the presentation in [AKRS21a,
Section 4]. However, while [AKRS21a, Subsection 4.2] states all results only for K = R they are
also valid over C. Therefore, the statements and proofs are accordingly adjusted to K ∈ {R,C}.
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likelihood with the semistability of a matrix tuple under the left-right action
of SLm1(K) × SLm2(K), Theorem 9.4.1(b), to obtain bounds on the ML thresh-
old mltb(M⊗

K(m1,m2)). The upper bound from Corollary 9.4.11 was new as it
appeared, while Corollaries 9.4.7, 9.4.12 and 9.4.13 recover known results from
the literature. All these bounds are consequences of Theorems 9.4.6 and 9.4.10,
which are proved by using results from [BD06] on the complex null cone under
the left-right action.

It is important to point out that the presented results are outdated: Derksen
and Makam combined Theorem 9.4.1 with representation theory of quivers to
determine all ML thresholds forM⊗

K(m1,m2) [DM21]. We state their main result
in Theorem 9.6.1. This was further generalized to determining all ML thresholds
of tensor normal models in [DMW22]. Still, this subsection may serve the reader
as a first introduction before entering the general concepts in [DM21; DMW22].
Remark 9.4.5. Note that Y = (Y1, . . . , Yn) ∈ (Km1×m2)n is unstable under the left-
right action of SLm1(K)×SLm2(K) if and only if Y † := (Y †1 , . . . , Y

†
n ) ∈ (Km2×m1)n

is unstable under the left-right action of SLm2(K)× SLm1(K). Equivalently, `Y is
not bounded from above if and only if `Y † is not bounded from above. Therefore,
mltb(M⊗

K(m1,m2)) = mltb(M⊗
K(m2,m1)) and we may assume that m1 ≥ m2. O

The following theorem gives a characterization of the matrix tuples with un-
bounded log-likelihood. It has been derived for K = R in [DKH21, Theorems
3.1(i) and 3.3(i)] using a different method.

Theorem 9.4.6 ([AKRS21a, Theorem 4.4]). Consider the matrix normal model
M⊗

K(m1,m2) with tuple of samples Y ∈ (Km1×m2)n. Then `Y is not bounded
from above if and only if there exist subspaces V1 ⊆ Km1 and V2 ⊆ Km2 with
m1 dimK V2 > m2 dimK V1 such that YiV2 ⊆ V1 for all i = 1, . . . , n.

Proof. The log-likelihood `Y is bounded from above if and only if Y is not in
the null cone NK under the left-right action of SLm1(K) × SLm2(K), by Theo-
rem 9.4.1(b). Thus, for K = C the statement follows from [BD06, Theorem 2.1]
respectively Proposition 2.3.6.

It remains to prove the case K = R, so let Y ∈ (Rm1×m2)n. Then Y /∈ NR
if and only if it is not in the complex null cone NC, by Proposition 2.2.18. The
latter is equivalent to the existence of subspaces W1 ⊆ Cm1 and W2 ⊆ Cm2

with m1 dimCW2 > m2 dimCW1 such that YiW2 ⊆ W1 for all i = 1, . . . , n, by
[BD06, Theorem 2.1] (respectively Proposition 2.3.6). This is the same condition
as in the statement, except with complex subspaces. The real condition implies
the complex one: if Vj ⊆ Rmj are real subspaces as in the statement, then
Wj := Vj ⊕ iVj ⊆ Cmj satisfy the complex conditions. We show the reverse
implication following an argument thanks to Jan Draisma.

Given complex subspaces W1 ⊆ Cm1 and W2 ⊆ Cm2 as above. Set Vj :=
Wj ∩ Rmj for j = 1, 2. Then also iVj ⊆ Wj, where i is the imaginary unit.
Furthermore, let V ′j be the image of the R-linear map fj : Wj → Rmj that sends a
complex vector to its real part. Of course, we have iVj ⊆ ker(fj). Conversely, any
w ∈ ker(fj) is of the form iv, where v ∈ Rmj but also −iw = v ∈ Wj. Therefore,
v ∈ Vj and this shows ker(fj) = iVj. The latter implies

2 dimCWj = dimRWj = dimR Vj + dimR V
′
j .
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In particular, we have m1 dimR V2 > m2 dimR V1 or m1 dimR V
′

2 > m2 dimR V
′

1 .
Since Y ∈ (Rm1×m2)n and YiW2 ⊆ W1, both inclusions YiV2 ⊆ V1 and YiV ′2 ⊆ V ′1
hold for all i = 1, . . . , n. Hence, (V1, V2) or (V ′1 , V

′
2) are real subspaces as in the

statement.

As a consequence we obtain a lower bound on mltb(M⊗
K(m1,m2)), which also

follows from [DKH21, Lemma 1.2].

Corollary 9.4.7 ([AKRS21a, Corollary 4.5]). If n < m1

m2
, then the log-likelihood

function `Y is unbounded from above for every tuple of samples Y ∈ (Km1×m2)n.
In particular,

mltb
(
M⊗

K(m1,m2)
)
≥
⌈
m1

m2

⌉
.

Proof. For any one-dimensional subspace V2 ⊆ Km2 , the dimension of V1 :=∑n
i=1 YiV2 is at most n. If n < m1

m2
, Theorem 9.4.6 implies that the log-likelihood

`Y is unbounded.

To prove further statistical consequences we introduce the cut-and-paste rank
from [BD06, Definition 2.2].17

Definition 9.4.8. Let K ∈ {R,C}. The cut-and-paste rank cp
(n)
K (a, b, c, d) over

K of a tuple of positive integers a, b, c, d and n is the maximum rank all ab× cd
matrices of the form

∑n
i=1 Xi ⊗ Yi, where Xi ∈ Kc×a and Yi ∈ Kd×b.

By the upcoming remark the cut-and-paste rank does not depend on K and we
therefore drop the index K. N

Remark 9.4.9 ([AKRS21a, Remark 4.7]). We have cp
(n)
R (a, b, c, d) ≤ cp

(n)
C (a, b, c, d)

and equality holds as follows. The condition for the rank of the complex matrix∑n
i=1 Xi ⊗ Yi to drop is given by minors. Thus, cp

(n)
C (a, b, c, d) is witnessed on

a Zariski-open subset of W := (Cc×a)n × (Cd×b)n and hence witnessed by some
element in (Rc×a)n × (Rd×b)n, as the latter is Zariski-dense in W . O

We use the cut-and-paste rank to state in Theorem 9.4.10 a necessary and
sufficient condition for `Y to be unbounded from above for every tuple of samples
Y ∈ (Km1×m2)n; or equivalently, for NK = (Km1×m2)n, where NK is the null cone
under the left-right action of SLm1(K) × SLm2(K). Note that if NK does not fill
the irreducible variety (Km1×m2)n, then NK must have positive codimension and
hence has Lebesgue measure zero. Consequently, `Y is either not bounded from
above for every Y ∈ (Km1×m2)n or it is bounded for almost all Y . Therefore, The-
orem 9.4.10 solves in principle the problem of determining mltb

(
M⊗

K(m1,m2)
)
,

although in terms of the cut-and-paste rank.18
Recall that we can assume that m1 ≥ m2, by Remark 9.4.5. Moreover, since

Corollary 9.4.7 shows that the likelihood is unbounded for m2n < m1, it suffices
to restrict to the range m2 ≤ m1 ≤ nm2.

17In [BD06] the cut-and-paste rank is defined over C. For statistical models over the reals it
is more natural to define it over R. Actually, both concepts agree, see Remark 9.4.9.

18At the time the first preprint of [AKRS21a] appeared this gave a statistical motivation to
study the cut-and-paste rank. However, Theorem 9.4.1 quickly led to a full determination of
all ML thresholds of M⊗K (m1,m2) by Derksen and Makam [DM21, Theorem 1.3]; see Theo-
rem 9.6.1. Thus, their result may now in turn be used to understand the cut-and-paste rank.
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Theorem 9.4.10 ([AKRS21a, Theorem 4.8]). Let 0 < m2 ≤ m1 ≤ nm2 and con-
sider the matrix normal model M⊗

K(m1,m2). The log-likelihood `Y is unbounded
from above for every tuple of samples Y ∈ (Km1×m2)n if and only if there exists
k ∈ {1, . . . ,m2} such that l = l(k) = dm1

m2
ke − 1 satisfies both

m1 − l ≤ n(m2 − k) and

cp(n)(a, b, c, d) = cd, where (a, b, c, d) = (m2 − k, k,m1 − l, nk − l).

Proof. Let NK be the null cone under the left-right action of SLm1(K)×SLm2(K)
on (Km1×m2)n, where K ∈ {R,C}. By Theorem 9.4.1(a), `Y is unbounded from
above for every tuple of samples Y ∈ (Km1×m2)n if and only if NK = (Km1×m2)n.
Moreover, NC = (Cm1×m2)n if and only if NR = (Rm1×m2)n. It therefore suffices
to characterize when NC = (Cm1×m2)n.

For this, define for natural numbers k and l

Qk,l :=

{
(Y1, . . . , Yn) ∈ (Cm1×m2)n | ∃V ⊆ Cm2 : dimC V = k,dimC

(
n∑
i=1

YiV

)
≤ l

}
.

The null cone NC is the union of the Qk,l over 1 ≤ k ≤ m2 and 0 ≤ l < m1

m2
k, by

Theorem 9.4.6. We observe that for fixed k the algebraic sets Qk,l become larger
as l increases. Hence, it suffices to consider if any of the Qk,l fills (Cm1×m2)n as k
ranges over 1 ≤ k ≤ m2, where the corresponding l is the largest integer strictly
smaller than m1

m2
k, i.e., l = l(k) := dm1

m2
ke − 1.

The assumption m1 ≤ nm2 yields l < nk. Therefore, [BD06, Proposition 2.4]
shows that

dimCQk,l = nm1m2 −
(
(m1 − l)(kn− l)− cp(n)(a, b, c̃, d)

)
,

where a = m2− k, b = k, c̃ = min{m1− l, n(m2− k)} and d = kn− l. Thus, Qk,l

equals (Cm1×m2)n if and only if

cp(n)(a, b, c̃, d) = (m1 − l)(kn− l).

Finally, the latter equation is equivalent to

m1 − l ≤ n(m2 − k) and cp(n)(a, b, c̃, d) = c̃d,

since c̃ = min{m1 − l, n(m2 − k)}, d = kn− l ≥ 1 and cp(n)(a, b, c̃, d) ≤ c̃d.

We use the above theorem to give an upper bound for mltb
(
M⊗

K(m1,m2)
)
,

which was new at its time.

Corollary 9.4.11 ([AKRS21a, Corollary 4.9]). Let 0 < m2 ≤ m1. If

n > max
1≤k≤m2

(
l(k)

k
+

m2 − k
m1 − l(k)

)
, where l(k) =

⌈
m1

m2

k

⌉
− 1, (9.15)

then `Y is bounded from above for almost all Y ∈ (Km1×m2)n. In other words,

mltb
(
M⊗

K(m1,m2)
)
≤
⌊

max
1≤k≤m2

(
l(k)

k
+

m2 − k
m1 − l(k)

)⌋
+ 1.
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Proof. First, we observe that (9.15) with k = m2 yields n > m1−1
m2

. The latter is
equivalent to nm2 ≥ m1, so we are in the setting of Theorem 9.4.10. Using the
notation in that theorem, we see that (9.15) is equivalent to every k ∈ {1, . . . ,m2}
satisfying cd > ab. In particular, for every such k we have cp(n)(a, b, c, d) ≤ ab <
cd. By Theorem 9.4.10, the log-likelihood `Y cannot be unbounded from above
for every tuple Y and hence `Y is bounded from above for almost all Y .

We obtain two further upper bounds which are known in the statistics litera-
ture, compare [DKH21, Proposition 1.3, Theorem 1.4].

Corollary 9.4.12 ([AKRS21a, Corollary 4.10]). It holds that

mltb
(
M⊗

K(m1,m2)
)
≤
⌈
m1

m2

+
m2

m1

⌉
.

Proof. For every k ∈ {1, . . . ,m2} we have l(k) < m1k
m2

, which implies that

m1

m2

+
m2

m1

>
l(k)

k
+

m2 − k
m1 − l(k)

.

Thus, the assertion follows from Corollary 9.4.11.

Corollary 9.4.13 ([AKRS21a, Corollary 4.11]). If m2 divides m1, then

mltb
(
M⊗

K(m1,m2)
)

=
m1

m2

.

Proof. If n < m1

m2
, the log-likelihood is always unbounded from above by Corol-

lary 9.4.7. So we write m1 = γm2, where γ ∈ Z≥1, and assume n ≥ γ. For
every k ∈ {1, . . . ,m2}, using the notation from Theorem 9.4.10, we see that
l = l(k) = γk − 1 and a < c. If n > γ, we also have that b < d, so
cp(n)(a, b, c, d) ≤ ab < cd. If n = γ, then m1 − l(k) > n(m2 − k). In either case,
one of the two conditions in Theorem 9.4.10 is not satisfied, so `Y is bounded
from above for almost all Y .

In Table 9.1 we list the maximum likelihood threshold mltb for boundedness
of the log-likelihood for small values of m1,m2, and compare with the bounds
discussed above.19 We observe that there are cases where our upper bound

α =

⌊
max

1≤k≤m2

(
l(k)

k
+

m2 − k
m1 − l(k)

)⌋
+ 1, where l(k) =

⌈
m1

m2

k

⌉
− 1,

is strictly better than the simple upper bound U = dm1

m2
+ m2

m1
e, e.g., when

(m1,m2) = (3, 2). In most cases our bound α matches the lower bound L = dm1

m2
e,

so that we can determine mltb. In addition, when m2|m1, one can use Corollary
9.4.13 to determine mltb even if the bounds L and α do not coincide, such as in
(m1,m2) = (8, 4) or in the square cases m1 = m2. The rest of the values of mltb
can be filled from [DKH21, Table 1]. We highlight the case (m1,m2) = (8, 3): the
maximum likelihood threshold mltb = 3 was computed in [DKH21] via Gröbner
bases, but it is not covered by the general bounds in [DKH21]. Nevertheless, our
bound α determines this case.

19This comparison represents the status when the first preprint of [AKRS21a] appeared in
March 2020. Now, all values of mltb in Table 9.1 are determined by [DM21, Theorem 1.3],
which we state in Theorem 9.6.1.
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m1 m2 L mltb α U
2 2 1 1 1 2
3 2 2 2 2 3
3 3 1 1 2 2
4 2 2 2 2 3
4 3 2 2 2 3
4 4 1 1 2 2
5 2 3 3 3 3
5 3 2 3 3 3
5 4 2 2 2 3
5 5 1 1 2 2
6 2 3 3 3 4
6 3 2 2 2 3
6 4 2 2 2 3
6 5 2 2 2 3
6 6 1 1 2 2

m1 m2 L mltb α U
7 2 4 4 4 4
7 3 3 3 3 3
7 4 2 3 3 3
7 5 2 3 3 3
7 6 2 2 2 3
7 7 1 1 2 2
8 2 4 4 4 5
8 3 3 3 3 4
8 4 2 2 3 3
8 5 2 3 3 3
8 6 2 2 2 3
8 7 2 2 2 3
8 8 1 1 2 2
9 2 5 5 5 5
9 3 3 3 3 4

m1 m2 L mltb α U
9 4 3 3 3 3
9 5 2 3 3 3
9 6 2 2 2 3
9 7 2 3 3 3
9 8 2 2 2 3
9 9 1 1 2 2
10 2 5 5 5 6
10 3 4 4 4 4
10 4 3 3 3 3
10 5 2 2 3 3
10 6 2 3 3 3
10 7 2 3 3 3
10 8 2 2 2 3
10 9 2 2 2 3
10 10 1 1 2 2

Table 9.1: [AKRS21a, Table 1] Bounds for the maximum likelihood threshold
mltb. L = dm1

m2
e is the lower-bound from Corollary 9.4.7, U = dm1

m2
+ m2

m1
e is

the upper bound from Corollary 9.4.12, and α is the upper bound from Corol-
lary 9.4.11.

9.4.3 Uniqueness of the MLE via stability

In this short subsection we compare conditions for a stable Y ∈ (Km1×m2)n under
left-right action of SLm1(K)× SLm2(K) with conditions for existence of a unique
MLE given Y in the matrix normal modelM⊗

K(m1,m2).
Example 9.4.3 shows that for K = R existence of a unique MLE given Y in

M⊗
R(m1,m2) is not equivalent to Y being stable. However, such an equivalence

holds in the complex setting K = C, by Theorem 9.4.1. Hence, for the complex
model M⊗

C(m1,m2) we obtain conditions for unique existence of an MLE given
Y ∈ (Cm1×m2)n from characterizing when Y is stable under the left-right action.
Characterizing this stability is a special case of the setting studied in [Kin94],
compare Section 2.3. Combining Theorem 2.3.1 and Theorem 9.4.1(d) directly
gives the following.

Theorem 9.4.14 ([AKRS21a, Theorem 4.12]). Consider the left-right action of
SLm1(C)× SLm2(C) on (Cm1×m2)n, and a tuple Y ∈ (Cm1×m2)n of n samples for
the complex matrix normal modelM⊗

C(m1,m2). The following are equivalent:

(a) there exists a unique MLE given Y ;

(b) the matrix tuple Y is stable;

(c) the matrix (Y1| . . . |Yn) ∈ Cm1×nm2 has rank m1, and m2 dimV1 > m1 dimV2

holds for all subspaces V1 ⊆ Cm1, {0} ( V2 ( Cm2 that satisfy YiV2 ⊆ V1

for all i = 1, . . . , n.

We note the similarity with the conditions that characterize semistability in
Theorem 9.4.6; see also Proposition 2.3.6. However, while Theorem 9.4.6 holds
both over R and C, the same cannot be true for Theorem 9.4.14 by Exam-
ple 9.4.3. In fact, the real analogue of Theorem 9.4.14(c) characterizes existence
of a unique MLE for the real matrix normal model M⊗

R(m1,m2), see [DKH21,
Theorems 3.1(ii) and 3.3(ii)].
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9.4.4 Operator Scaling and Flip-Flop Algorithm

In this subsection, we illustrate the algorithmic consequences of the connection
between invariant theory and maximum likelihood estimation. We present the
flip-flop algorithm for ML estimation that is well-known in statistics, and connect
it to Algorithm 3.2 for operator scaling in invariant theory. The connection allows
us to give a complexity analysis of the flip-flop algorithm in Theorem 9.4.16.

It is noteworthy to mention that the similarities between operator scaling and
the flip-flop algorithm started and stimulated the work on [AKRS21a]. The study
first led to Theorem 9.4.1, which was then generalized to the setting of Gaussian
group models.

Comparing Operator Scaling and the Flip-Flop Algorithm

Operator scaling, Algorithm 3.2, solves the Scaling Problem 3.1.4 for the left-right
action of SLm1(C) × SLm2(C) on (Cm1×m2)n, compare Section 3.2. The method
was generalized to tuples of tensors in [BGO+18, Algorithm 1].

The flip-flop algorithm [Dut99; LZ05; WJS08], see the bottom left of Fig-
ure 9.1, is an alternating maximization procedure to find an MLE in a matrix
normal model M⊗

K(m1,m2). It can be thought of as a Gaussian version of IPS
for matrix normal models, since one alternately updates the estimates in each
marginal. If we consider Ψ2 ∈ PDm2(K) to be fixed, the log-likelihood in Equa-
tion (9.12) becomes, up to constants,

m2

[
log det(Ψ1)− tr

(
Ψ1 ·

1

nm2

n∑
i=1

YiΨ
T
2 Y
†
i

)]
.

Maximizing the latter with respect to Ψ1 reduces to the case of a standard mul-
tivariate Gaussian model as in (6.8). The unique maximizer over PDm1(K), if
it exists, is the inverse of the matrix 1

nm2

∑n
i=1 YiΨ

T
2 Y
†
i , compare Example 6.3.8.

In the same way, we can fix Ψ1 and use det(Ψ2) = det(ΨT
2 ) to maximize the

log-likelihood with respect to ΨT
2 . Iterating these two steps gives Algorithm 9.1.

We now compare operator scaling, Algorithm 3.2, with the flip-flop algorithm.
First, note that operator scaling restricts to matrices of determinant one, in order
to stay in the SLm1(C) × SLm2(C)-orbit of Y . In comparison, Algorithm 9.1
has constants chosen to minimize the outer infimum in Equation (9.14). In the
following we argue that, via the correspondence20 g†jgj ↔ Ψj, operator scaling is
the same procedure as the flip-flop algorithm, up to scalar factors.21

We exemplify this for updating g2 respectively Ψ2. Given g and Y , and
ignoring the determinant one rescaling, we set gnew

2 := %−1/2g2, where

%2 :=

(
n∑
i=1

(
g1Yig

T
2

)†(
g1Yig

T
2

))T

= g2

(
n∑
i=1

Y †i g
†
1g1Yi

)T

g†2

20Remember that g ∈ G = GLm1
(K)×GLm2

(K) gives (g†1g1)⊗(g†2g2) ∈Mg
G =M⊗K (m1,m2),

see Example 9.1.6.
21This is similar to classical matrix scaling and its invariant theoretic appearance, compare

the extended example in Section 3.1.
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Algorithm 9.1: Flip-flop [AKRS21a, Algorithm 4.1]
Input : Y1, . . . , Yn ∈ Km1×m2 , a number of iterations N ∈ Z>0.
Output: an approximation of an MLE, if it exists.

Initialize Ψ2 := Im2 ;
for k = 1 to N do

the following pair of updates

Ψ1 ←

(
1

nm2

n∑
i=1

YiΨ
T
2 Y
†
i

)−1

Ψ2 ←

(
1

nm1

n∑
i=1

Y †i Ψ1Yi

)−T
.

(9.16)

end
return Ψ1 ⊗Ψ2.

is defined as in Algorithm 3.2. We compute

(gnew
2 )†gnew

2 = g†2%
−1g2 =

(
n∑
i=1

Y †i g
†
1g1Yi

)−T
←→

(
n∑
i=1

Y †i Ψ1Yi

)−T
,

which indeed corresponds, up to scalar factors, to Ψnew
2 , compare Equation (9.16).

A similar computation holds for g1 and Ψ1.
Conversely, the square-root Ψ

1/2
j =: ĝj satisfies ĝ†j ĝj = Ψj = g†jgj and hence

ĝj only differs by a unitary matrix from gj. Therefore, ‖ĝ · Y ‖ = ‖g · Y ‖ and
‖µG(ĝ ·Y )‖ = ‖µG(g ·Y )‖. Altogether, Algorithms 3.2 and 9.1 are, up to rescaling,
essentially the same.

Although operator scaling is defined over C, when restricting to real inputs it
only involves computations over the reals, compare Algorithm 3.2. This allows the
computation of MLEs (if they exist) inM⊗

R(m1,m2) via (9.14), since the capacity
of a real matrix tuple is the same under the action of SLm1(R)×SLm2(R) as under
the action of SLm1(C)× SLm2(C), see Proposition 2.2.18.

Convergence

Due to the above comparison of the flip-flop algorithm with operator scaling,
we can analyse the convergence behaviour of the former. If an update step in
Algorithm 9.1 cannot be computed because one of the matrices in (9.16) cannot
be inverted, then the matrix tuple Y ∈ (Km1×m2)n is unstable under the action
of SLm1(K)× SLm2(K). This implies that the log-likelihood `Y is unbounded, by
Theorem 9.4.1(a). Otherwise, the sequence of terms∥∥∥( det(Ψ1)

−1/(2m1)Ψ
1/2
1 , det(Ψ2)

−1/(2m2)Ψ
1/2
2

)
· Y
∥∥∥2

converges. If the limit is zero, then the log-likelihood `Y is unbounded.
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Otherwise, the limit is a positive number and Y is semistable. Here, two pos-
sibilities can arise. First, if Y is polystable then the minimal norm is attained at
an element of the group SLm1(K)×SLm2(K), and the flip-flop algorithm converges
to an MLE, using the fact that the constants in the flip-flop algorithm minimize
the outer infimum in (9.14). Second, if Y is semistable but not polystable then
the flip-flop algorithm diverges by the following remark.
Remark 9.4.15 ([AKRS21a, Remark 4.14]). If Y ∈ (Km1×m2)n is semistable but
not polystable under the left-right action of SLm1(K) × SLm2(K), then the like-
lihood LY (equivalently the log-likelihood `Y ) is bounded from above, but does
not attain its supremum. In this case, any sequence ΨN := (Ψ1,N ⊗ Ψ2,N) of
concentration matrices with

lim
N→∞

LY (Ψ1,N ⊗Ψ2,N) = supLY > 0

diverges by the following. Assume a limit Ψ∞ exists. If Ψ∞ ∈ PDm1m2(K)
then Ψ∞ ∈ M⊗

K(m1,m2) as the latter is Euclidean closed in PDm1m2(K), by
Theorem 9.3.1. This contradicts the supremum of LY not being attained. On the
other hand, if Ψ∞ /∈ PDm1m2(K) then it is rank-deficient positive semidefinite, so
det(Ψ∞) = 0 and (6.7) yield the contradiction supLY = LY (Ψ∞) = 0. O

Complexity

As a direct consequence of the above comparison and convergence analysis, the
complexity analysis of operator scaling carries over to the flip-flop algorithm. We
adapt [BGO+18, Theorem 1.1] to our notation to derive the following.

Theorem 9.4.16 ([AKRS21a, Theorem 4.15]). Let ε > 0 and let Y ∈ (Zm1×m2)n

with matrix entries of bit size bounded by b. After poly(nm1m2, b, 1/ε) many
steps, the flip-flop algorithm either identifies that the log-likelihood `Y is un-
bounded or finds (Ψ1,Ψ2) ∈ PDm1(K) × PDm2(K) such that the matrix tuple
Y ′ :=

(
det(Ψ1)−1/(2m1)Ψ

1/2
1 , det(Ψ2)−1/(2m1)Ψ

1/2
2

)
· Y satisfies ‖µG(Y ′)‖ ≤ ε, where

µG is as in Equation (2.19).

If `Y is bounded from above, taking the limit ε→ 0 in Theorem 9.4.16 gives
rise to two possibilities. Either the MLE exists and is the limit of the Ψ1⊗Ψ2 as
ε → 0, or the sequence Ψ1 ⊗ Ψ2 diverges as ε → 0, by Remark 9.4.15. Thus, in
the latter scenario there is no meaningful notion of an approximate MLE.

Outlook

Remember that [BGO+18, Algorithm 1] generalizes operator scaling to scale
tensors of format m1 × · · · ×md under the action of SLm1(C) × · · · × SLmd(C).
Thus, it can be used for ML estimation in (real and complex) tensor normal
models. Similarly to the above, [BGO+18, Algorithm 1] corresponds to the flip-
flop algorithm for tensor normal models, see e.g., [FORW21, Algorithm 2]. The
latter algorithm satisfies the following. If Y is a tuple of i.i.d. d-tensor samples
from the distribution given by Ψ ∈M⊗

R(m1, . . . ,md), then the flip-flop algorithm
converges linearly with high probability to Ψ, [FORW21, Theorems 2.9 and 2.10].
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Finally, we stress again that the geodesic convex methods in [BFG+19] can be
used for ML estimation in Gaussian group modelsMg

G where G is Zariski closed
and self-adjoint, compare Subsection 9.3.1 and the right hand side of Figure 9.1.

9.5 TDAG models as Gaussian group models

In this section we revisit Gaussian graphical models given by a directed acyclic
graph (DAG) G, see Definition 6.3.11. The section is mainly based on [AKRS21a,
Section 5], but also presents further results and knowledge from [MRS21]. We
focus on the following subclass of DAGs.

Definition 9.5.1. A DAG G is called transitive if whenever k → j and j → i in
G then also k → i in G. We usually abbreviate transitive DAG to TDAG. N

First, we connect DAG models to the setting of Gaussian models via sym-
metrization by defining a natural set A(G) ⊆ GLm(K) such thatM→

G =Mg

A(G).
Afterwards, we characterize when A(G) is a subgroup of GLm(K). It turns out
that this is the case if and only if G is transitive. Therefore, TDAG models
are naturally Gaussian group models. However, the group A(G) is usually not
self-adjoint. Still, we can deduce the full correspondence for TDAG models,
Theorem 9.5.9, and the GSL-stabilizer of a sample matrix Y is proven to be in
bijection with the MLEs given Y , compare Proposition 9.5.10. Finally, we briefly
study which undirected Gaussian graphical models from Example 6.3.10 arise as
Gaussian group models.

In the following the vertex set I of G is always [m] = {1, 2, . . . ,m}. Recall
from Definition 6.3.11 that a DAG model M→

G is given by a linear structural
equation (6.13). Thus,M→

G is the set of all concentration matrices of the form

(Im−Λ)†Ω−1(Im−Λ),

where Ω ∈ PDm(K) is diagonal and λij = 0 whenever j 6→ i in G, compare
Equation (6.14). By acyclicity, we can and will assume that j > i whenever
j → i in G, so Λ is strictly upper triangular, see Remark 6.3.12.

Now, we put DAG models into the context of Gaussian models via sym-
metrization. Given a DAG G, we define the set of upper triangular matrices

A(G) = {a ∈ GLm(K) | aij = 0 for i 6= j with j 6→ i in G}. (9.17)

Lemma 9.5.2 ([MRS21, Lemma 2.9]). Let G be a DAG. The corresponding model
M→
G is the Gaussian model given by A(G): M→

G =Mg

A(G).

Proof. Let Ψ = (Im−Λ)†Ω−1(Im−Λ) ∈ M→
G , where Λ and Ω are as above, and

set a := Ω−1/2(Im−Λ). By construction, Ψ = a†a and if i 6= j with j 6→ i in G,
then λij = 0 and therefore aij = −ω−1/2

ii λij = 0. This showsM→
G ⊆M

g

A(G).
Conversely, let Ψ = b†b for some b ∈ A(G) and set kii := bii |bii|−1 for i ∈ [m].

The latter defines a diagonal matrix k such that k†k = Im and a := kb has positive
diagonal entries aii = |bii|. We have a†a = b†b = Ψ and, as multiplication with
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k preserves the support, a ∈ A(G). Now, consider the positive-definite diagonal
matrix D := diag(a2

11, . . . , a
2
mm) and the unipotent upper triangular matrix U :=

diag(a−1
11 , . . . , a

−1
mm)a. Then U †DU = Ψ, so Ψ is of the form (Im−Λ)†Ω−1(Im−Λ)

for Ω = D−1 and strictly upper triangular Λ = Im−U . It remains to show that
Λij = 0 whenever i 6= j such that j 6→ i in G. For such i, j we have aij = 0 since
a ∈ A(G) and hence Λij = a−1

ii aij = 0.

Given the previous lemma it is natural to ask when A(G) is a group, so that
Mg

A(G) is a Gaussian group model. To prove that transitivity is a necessary and
sufficient condition we use the following lemma.

Lemma 9.5.3 ([MRS21, Lemma B.1]). Let A = L ∩ GLm(K), where L is a K-
linear subspace of Km×m, and assume Im ∈ A. Then A is a subgroup of GLm(K)
if and only if it is closed under multiplication.

Proof. A group is closed under multiplication. Conversely, if A is closed under
multiplication, we have to show that it is also closed under inverses. For a matrix
a ∈ A let fa(t) = tm+c1t

m−1+· · ·+cm ∈ K[t] be its characteristic polynomial. We
know cm 6= 0 because cm is, up to sign, the determinant of a. Using the theorem
of Cayley-Hamilton we deduce −c−1

m (am−1 + c1a
m−2 + · · ·+ cm−1 Im)a = Im, so

a−1 = − 1

cm

(
am−1 + c1a

m−2 + · · ·+ cm−1 Im
)
.

By assumption, Im ∈ L and, as A is closed under multiplication, ak ∈ A ⊆ L for
all k ≥ 1. Since L is a K-vector space, we have a−1 ∈ L and hence a−1 ∈ A.

Proposition 9.5.4 ([AKRS21a, Proposition 5.1]). Let G be a DAG. The set of
matrices A(G) ⊆ GLm(K) is a group if and only if G is transitive, i.e., a TDAG.

Proof. If G is not transitive, then there exist pairwise distinct indices i, j, k ∈ [m]
such that j → i and k → j, but k 6→ i. Take the matrices g = Im +Eij (with ones
on the diagonal and at the (i, j) entry, and zero elsewhere) and h = Im +Ejk. We
have g, h ∈ A(G), but gh /∈ A(G) as (gh)ik = 1. Therefore, A(G) is not a group.

Conversely, assume that G is transitive. Note that any invertible diagonal
matrix, in particular the identity Im, is contained in A(G). Thus, it suffices to
show that A(G) is closed under multiplication, by Lemma 9.5.3. Let g, h ∈ A(G)
and consider i 6= j such that j 6→ i. We need to prove that (gh)ij = 0 to ensure
gh ∈ A(G). Using gij = hij = 0 (as j 6→ i) we obtain

(gh)ij =
∑
k∈[m]

gikhkj =
∑

k∈[m]\{i,j}

gikhkj.

Since G is transitive we cannot have gik 6= 0 and hkj 6= 0 for some k ∈ [m]\{i, j};
otherwise k → i and j → k would yield j → i, a contradiction. Hence, (gh)ij = 0
which ends the proof.
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Example 9.5.5 ([AKRS21a, Example 5.2]). Let G be the TDAG 1 3 2.
The corresponding group G := A(G) ⊆ GL3(K) consists of invertible matrices g
of the form

g =

∗ 0 ∗
0 ∗ ∗
0 0 ∗

 .

By Proposition 9.5.4, we have that the Gaussian graphical model M→
G is Mg

G

and one computes that

Mg
G =

{
g†g | g ∈ G

}
=
{

Ψ ∈ PD3(K) | ψ12 = ψ21 = 0
}
.

is a 5-dimensional linear slice of PD3(K). ♦

Given a TDAG G, Proposition 9.5.4 puts us into the setting of Gaussian group
models. The group G := A(G) is Zariski closed but in general not self-adjoint
as it is upper triangular. Hence, we cannot apply the results from Section 9.3.
However, we can prove the full correspondence for TDAG models differently. We
start with the following observation.

Remark 9.5.6 (Weak Correspondence for TDAG models).
For a TDAG G the group G := A(G) ⊆ GLm(K) is closed under non-zero
scalar multiples and contains the orthogonal matrix diag(−1, 1, . . . , 1) of determi-
nant −1. Thus, the weak correspondence via the action of GSL, see Theorem 9.2.7
respectively Theorem 8.2.3, holds for the TDAG modelM→

G =Mg
G. O

We provide a simple lemma to state equivalences between stability notions
under GSL and linear (in)dependence conditions on the rows of Y ∈ Km×n.

Lemma 9.5.7. Let M ∈ K(1+β)×n with rows M (0),M (1), . . . ,M (β) ∈ K1×n such
that M (0) /∈ span

{
M (1), . . . ,M (β)

}
. Then there exists w ∈ Kn such that for any

x = (x0, x1, . . . , xn) we have

x0 =
n∑
l=1

wl

β∑
j=0

xjMj,l.

Proof. Let (e0, e1, . . . , eβ) be the ordered standard basis of K1+β. The assumption
M (0) /∈ span

{
M (1), . . . ,M (β)

}
implies that

ker
(
M †) ⊆ span{e1, . . . , eβ} = {0} ×Kβ.

Therefore, e0 is in the orthogonal complement of ker(M †), i.e., in the image
of M . Hence, there is some w ∈ Kn with Mw = e0. For the row x, the equation
x0 = xe0 = xMw yields the claim.

Next, we give equivalences between stability notions under GSL and the lin-
ear (in)dependence conditions on the rows of Y ∈ Km×n encountered in Theo-
rem 6.3.16. For this, recall that Y (i) is the ith row of Y and, by convention, the
linear hull of the empty set is the zero vector space. The following statement will
be generalized in Theorem 10.6.3.
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Theorem 9.5.8. Let G be a TDAG with group G := A(G) ⊆ GLm(K). For
Y ∈ Km×n, stability under GSL relates to linear independence conditions:

(a) Y unstable ⇔ ∃ i ∈ [m] : Y (i) ∈ span
{
Y (j) : j ∈ pa(i)

}
(b) Y polystable ⇔ ∀ i ∈ [m] : Y (i) /∈ span

{
Y (j) : j ∈ pa(i)

}
(c) Y stable ⇔ ∀ i ∈ [m] : Y (i∪pa(i)) has full row rank.

In particular, Y is semistable if and only if it is polystable.

Proof. First, assume there is some vertex i ∈ [m] such that the row Y (i) is a
K-linear combination of its parent rows:

Y (i) =
∑
j∈pa(i)

λjY
(j)

Then the ith row of g · Y is zero, where g ∈ GSL has diagonal entries equal one
and the only non-zero off-diagonal entries are gij = −λj, j ∈ pa(i). For ε > 0, let
gε be the diagonal matrix with entries (gε)ii = ε−m+1 and (gε)kk = ε, k 6= i. By
construction, gε ∈ GSL and gεg · Y → 0 for ε→ 0, so Y is GSL-unstable.

Conversely, assume that Y (i) /∈ span
{
Y (j) : j ∈ pa(i)

}
for all vertices i ∈ [m].

Then Y 6= 0 and we will show that the GSL-orbit of Y is Euclidean closed, i.e., Y is
GSL-polystable. By Lemma 2.4.3, it suffices to prove that GSL ·Y is Zariski closed
for K = C and we show that via Popov’s Criterion from Section 2.4. For this, we
use the language of Section 2.4 with respect to the action of GSL on Cm×n. In
particular, T = STm(C) and the xi,j ∈ C[GSL] for i, j ∈ [m] denote the coordinate
functions on GSL.

Since Y (i) /∈ span
{
Y (j) : j ∈ pa(i)

}
, we can apply Lemma 9.5.7 to the

matrix Y (i∪pa(i)) and the xi,j, j ∈ {i} ∪ pa(i). Hence, there exists w ∈ Cn with

xi,i =
n∑
l=1

wl
∑

j∈{i}∪pa(i)

xi,jYj,l =
n∑
l=1

wl

m∑
j=1

Yj,lxi,j ,

where we used in the final equality that xi,j = 0 if j /∈ {i} ∪ pa(i). By Equa-
tion (2.28), this shows that xi,i ∈ RY for all i ∈ [m] and hence we have

∀ (d1, . . . , dm) ∈ Zm≥0 :
∏
i∈[m]

xdii,i ∈ RY .

The latter exhaust all characters of T = STm(C) thanks to the fact that
∏

i∈[m] xi,i
is the trivial character. We conclude XGSL·Y = X(T ) which is a group. Therefore,
the orbit GSL · Y is Zariski closed by Popov’s Criterion (Theorem 2.4.1).

Since the right hand side of (a) and (b) are opposites of each other and
polystable implies semistable (the opposite of unstable), we have proven the
equivalences in (a) and (b).

To prove part (c) it suffices, by part (b), to show that a polystable Y has finite
GSL stabilizer if and only if for all i ∈ [m] the parent rows Y (j), j ∈ pa(i) are
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linearly independent. Let Y be polystable. A matrix g ∈ GSL is in the stabilizer
of Y , i.e., gY = Y , if and only if for all i ∈ [m]

(gY )(i) = giiY
(i) +

∑
j∈pa(i)

gijY
(j) = Y (i). (9.18)

Since Y (i) is not in the linear span of its parent rows, Equation (9.18) implies that
gii = 1 and

∑
j∈pa(i) gijY

(j) = 0. If Y (j), j ∈ pa(i) are linearly independent, then
(9.18) has exactly one solution, namely gii = 1 and gij = 0 for all j ∈ pa(i). Thus,
if for all i ∈ [m] the Y (j), j ∈ pa(i) are linearly independent, then (GSL)Y = {Im}
is trivial and Y is stable. On the other hand, if there is some i ∈ [m] such
that Y (j), j ∈ pa(i) are linearly dependent, then Equation (9.18) has infinitely
many solutions. Each solution gii = 1 and gij, j ∈ pa(i) of (9.18) gives rise to a
unipotent matrix g ∈ (GSL)Y by setting all other off-diagonal entries of g to zero.
Therefore, (GSL)Y is infinite and Y is not stable.

Parts (a) and (b) of Theorem 9.5.8 constitute [AKRS21a, Theorem 5.3], which
is proven in [AKRS21a] more ad-hoc and without using Popov’s Criterion.22
These parts in combination with the weak correspondence, Theorem 9.2.7, prove

mltb(M→
G ) = mlte(M→

G ) = 1 + max
i∈[m]
| pa(i)|.

This is [AKRS21a, Corollary 5.5] and recovers parts of the known Corollary 6.3.19
for transitive DAGs without using Theorem 6.3.16.

Now, combining Theorem 6.3.16 and Theorem 9.5.8 directly gives the full
correspondence for TDAG models, which will be generalized to so-called RDAG
models in Theorem 10.6.4.

Theorem 9.5.9 (Full Correspondence for TDAGs). Let G be a TDAG with group
G := A(G) ⊆ GLm(K). Consider the TDAG model M→

G = Mg
G with tuple of

samples Y ∈ Km×n. Stability under the action of GSL is related to ML estimation
as follows.

(a) Y unstable ⇔ `Y not bounded from above
(b) Y semistable ⇔ `Y bounded from above
(c) Y polystable ⇔ MLE exists
(d) Y stable ⇔ unique MLE exists

We point out that the equivalence in part (d) also holds for K = R, which is
not the case in the self-adjoint situation, compare Theorem 9.3.6.

Remember that the GSL-stabilizer of Y acts from the right on the set of MLEs
given Y , compare Proposition 9.2.4. In the self-adjoint situation this action is
transitive (Proposition 9.3.3). This can be further strengthened for TDAGmodels
as follows.

22We presented the proof of Theorem 9.5.8 via Popov’s Criterion to advertise this algebraic
tool for testing polystability. We remark that generalizing this proof led to the concept of
augmented sample matricesMY,s, compare Section 10.7 and Lemma 10.7.8. The matricesMY,s

are indispensable for several main results of Chapter 10.
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Proposition 9.5.10. Let G be a TDAG with group G := A(G) ⊆ GLm(K). Con-
sider the TDAG modelMg

G and assume Y ∈ Km×n has an MLE Ψ̂ ∈Mg
G. Then

the group action of (GSL)Y on the the set of MLEs given Y from Proposition 9.2.4
is free and transitive. In other words, we have a bijection

(GSL)Y → {MLEs given Y }, g 7→ g†Ψ̂g.

A proof is omitted as the statement is a special case of Proposition 10.7.9,
which is proven in Section 10.7.

Example 9.5.11 (Saturated model as a TDAG model). Remember that the
saturated Gaussian model M = PDm(K) arises as the Gaussian group model
Mg

GLm(K), studied in Example 9.3.8. However, it is also induced by the group
Bm(K) of upper invertible matrices: Mg

Bm(K) = PDm(K). This is the Gaussian
group model given by the “full” TDAG, i.e., the TDAG on vertex set [m] that
contains a directed edge i← j whenever i < j.

An interesting distinction between these two viewpoints arises for the action
of the stabilizer (GSL)Y on the set of MLEs given Y ∈ Km×n, Proposition 9.2.4.
For G = GLm(K) we have a transitive action by 9.3.3 that is in general not free.
In contrast, Proposition 9.5.10 for TDAGs gives a transitive and free action for
G = Bm(K). Hence, the restriction to upper triangular matrices excludes possible
redundancies, i.e., distinct stabilizer elements giving the same MLE.

The (T)DAG perspective recovers classical knowledge as given in Exam-
ple 6.3.8. Since vertex 1 has all other m− 1 vertices as parents, Corollary 6.3.19
yields the known value for the ML thresholds:

mltb
(

PDm(K)
)

= mlte
(

PDm(K)
)

= mltu
(

PDm(K)
)

= m.

Moreover, we have Y 1∪pa(1) = Y and hence Theorem 6.3.16(c) shows that there
is a unique MLE if and only if Y has full row rank. Otherwise, the log-likelihood
`Y is not bounded from above, by Theorem 6.3.16(a). ♦

Example 9.5.12 (based on[AKRS21a, Example 5.8]).
Let G be the TDAG 2 1 3. The corresponding groupG := A(G) ⊆ GL3(K)
consists of invertible matrices of the form

g =

∗ ∗ ∗0 ∗ 0
0 0 ∗

 .

We know from Corollary 6.3.19 that mlte(M→
G ) = 2 + 1 = 3 as vertex 1 has two

parents. A sample matrix Y ∈ Km×n is GSL-polystable if and only if Y (2), Y (3) 6= 0
and Y (1) is not in the linear span of Y (2) and Y (3), compare Theorem 9.5.8.
Otherwise, it is unstable. Furthermore, Y is stable if and only if it has full row
rank, since Y (1∪pa(1)) = Y .

Let n = 2 and consider the sample matrix

Y =

0 1
1 0
1 0

 .
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It is polystable and hence there exists an MLE given Y . One can check that Y
is of minimal norm in its GSL-orbit. Therefore, 2 I3 is an MLE given Y using
Theorem 9.2.7 and that λ = 2 minimizes x 7→ 3

2
x− 3 log(x), see Lemma 8.2.2(ii).

Moreover, the GSL-stabilizer of Y is in bijection with the set of MLEs given Y ,
by Proposition 9.5.10. We have

(GSL)Y =


1 t −t

0 1 0
0 0 1

 : t ∈ K

 , thus

2

 1 t −t
t |t|2 + 1 −|t|2
−t −|t|2 |t|2 + 1

 : t ∈ K


is the set of MLEs given Y . Hence, there are infinitely many MLEs given Y . ♦

The next proposition gives a precise criterion when the null cone under the
GSL action, i.e., the set of sample matrices Y ∈ Km×n for which `Y is not bounded
from above, is Zariski closed. This extends and clarifies [AKRS21a, Corollary 5.7],
which is Proposition 9.5.13(ii).

For this, we use the notion of an unshielded collider from Definition 6.3.13.
Furthermore, the depth d(G) of a DAG G is the number of arrows in a maximal
directed path in G. Note that d(G) ≤ m − 1 and if G is transitive then actually
d(G) ≤ maxi∈[m] | pa(i)| < mlte(M→

G ).

Proposition 9.5.13. Let G be a TDAG with group G := A(G) ⊆ GLm(K) and
consider the action of GSL on Km×n via left multiplication.

(i) Let n < mlte(M→
G ). Then the Zariski closure of the null cone is Km×n. The

null cone is Zariski closed, i.e., equal to Km×n, if and only if n ≤ d(G).

(ii) Let n ≥ mlte(M→
G ). Then the irreducible components of the Zariski closure

of the null cone are determinantal varieties: each component is defined by
the maximal minors of the submatrix Y (s∪pa(s)), where s is a childless vertex.
The null cone is Zariski closed if and only if G has no unshielded colliders.

Proof. First, let n < mltb(M→
G ) = mlte(M→

G ). By definition of mltb(M→
G ) and

Theorem 9.5.9(a), almost all Y are GSL-unstable, so the null cone is Zariski dense
in Km×n. This shows the first part of (i).

Now, additionally assume n ≤ d := d(G). There is some directed path

p0 p1 p2 · · · pd

in G. The transitivity of G implies that pj+1, . . . , pd are parents of pj for all
j = 0, 1, . . . , d − 1. Now, for any Y ∈ Km×n the row vectors Y (pj) ∈ K1×n,
j = 0, 1, . . . , d are linearly dependent as n < d+ 1. Therefore, there is some non-
trivial linear combination

∑
j λjY

(pj) = 0. For the minimal k such that λk 6= 0

we see that Y (pk) is a linear combination of (some of) its parent rows. Hence, Y
is GSL-unstable by Theorem 9.5.8(a). Thus, the null cone equals Km×n.

Conversely, if n > d = d(G), then we construct a polystable Y as follows.
Denote by d(i) the number of arrows in a longest path in G starting at i. Then
0 ≤ d(i) ≤ d, d(i) = 0 if and only if vertex i is childless, and if p→ i then d(i) <
d(p). Fix linear independent row vectors r0, r1, . . . , rd ∈ K1×n using n ≥ d + 1.
Now, define Y ∈ Km×n by setting Y (i) := rd(i) for all i ∈ [m]. By construction,
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the parent rows of Y (i) = rd(i) are all contained in {rd(i)+1, . . . , rd(G)}. Thus, Y (i)

is not in the linear span of its parent rows and hence Y is polystable.
To prove (ii), assume that n ≥ mlte(M→

G ) = 1 + maxi∈[m] | pa(i)|. The null-
cone is the finite union of all

L(i) :=
{
Y ∈ Km×n | Y (i) ∈ span{Y (j) | j ∈ pa(i)}

}
where i ∈ [m]. Taking the Zariski closure commutes with finite unions, hence
the Zariski closure of the null cone is the finite union of L(i)

Z
. Since n ≥ 1 +

maxi∈[m] | pa(i)|, the closure L(i)
Z
can be described via the the maximal minors of

the matrix Y (i∪pa(i)). Thus, the Zariski closure of the null cone actually contains
all matrices that are not stable, see Theorem 9.5.8(c). If a vertex i has child c,
then by transitivity all parents of i are also parents of c. Hence, Y (i∪pa(i)) is a
submatrix of Y (c∪pa(c)) and so L(i)

Z
⊆ L(c)

Z
. This shows the first part of (ii).

Recall from Remark 6.3.12 that we assume i < j whenever i← j in G. Assume
G has no unshielded colliders. Let Y be a matrix in the Zariski closure of the null
cone. Then there is some vertex i = p0 ∈ [m] such that Y ∈ L(i)

Z
, i.e., there is a

non-trivial linear combination
∑s

j=0 λjY
(pj) = 0, where p1, . . . , ps are the parents

of i = p0. Let k be the smallest integer with λk 6= 0. Then Y (pk) is in the linear
span of Y (pk+1), . . . , Y (ps). If pt for some t ∈ {k + 1, . . . , s} would not be a parent
of pk, then necessarily k > 0 (i.e., pk 6= i) and so G would have the unshielded
collider pt → i← pk; a contradiction. Therefore, Y (pk) is in the linear span of its
parent rows and hence Y is unstable. Thus, the null cone is Zariski closed.

On the other hand, assume G has an unshielded collider j → i ← k where
j < k. If i has several pairs of parents that give an unshielded collider, then
consider a pair j < k where k is maximal. This ensures that any parent p of k
is also a parent of j as follows. We have p > k > j, so in particular j 6→ p. By
transitivity p → k and k → i show that p is a parent of i. Thus, p must be a
parent of j as otherwise j → i ← p would be an unshielded collider with p > k,
which contradicts the maximality of k. With this we construct a matrix Y which
is not in the null cone but in its Zariski closure. Each row of Y , except for the
kth row, is chosen such that it is not in the linear span of its parent rows. This is
possible as n ≥ mlte(M→

G ). In particular, the row Y (j) is not in the linear span
of its parent rows, which include the parent rows of Y (k) by the above argument.
Thus, setting Y (k) := Y (j) ensures that Y is polystable by Theorem 9.5.8(b).
Moreover, the parent rows Y (j) and Y (k) of Y (i) are linearly dependent, so Y is
contained in L(i)

Z
and hence in the Zariski closure of the null cone.

Let us illustrate the previous proposition in an example.

Example 9.5.14. Let m = 4 and consider the TDAG G given by

3 2 4

1
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We have d(G) = 2 and mlte(M→
G ) = 4, as vertex 1 has three parents. Denote

the corresponding group by G := A(G) and consider the usual GSL action on the
sample space K4×n.

For sample size n = 1, 2 the null cone equals K4×n, by Proposition 9.5.13(i).
Alternatively, this can be checked via Theorem 9.5.8(a) by case distinction.

If n = 3 < mlte(M→
G ), then the null cone is only Zariski dense in K4×3 as

3 = n > d(G) = 2. For example, the sample matrix
1 0 0
0 1 0
0 0 1
0 0 1

 (9.19)

is polystable and was constructed using d(1) = 0, d(2) = 1, d(3) = d(4) = 2 and
the recipe from the proof of Proposition 9.5.13.

If n = mlte(M→
G ) = 4, the Zariski closure of the null cone has one irreducible

component given by the sink 1, see Proposition 9.5.13(ii). Since Y (1∪pa(1)) = Y
has exactly one maximal minor, the Zariski closure of the null cone is the set of
singular matrices {Y ∈ K4×4 | det(Y ) = 0}. Furthermore, G has the unshielded
collider 3→ 2← 4, so the null cone is not Zariski closed. Indeed, if we append a
zero column to the matrix from Equation (9.19), then we obtain a polystable Y ′
that is singular. ♦

Finally, we describe the implications of the above results for undirected Gaus-
sian graphical models from Example 6.3.10, see also [Sul18, Chapter 13]. Re-
member that a Gaussian graphical model on an undirected graph G is given by
all concentration matrices Ψ such that Ψij = 0 whenever the edge i j is missing
from G. A natural question is to determine which undirected Gaussian graph-
ical models are Gaussian group models, i.e., of the form Mg

G for some group
G ⊆ GLm(K). For instance, note that the undirected model corresponding to
1 2 3 is the same as the directed model from Example 9.5.5. We argue
that any undirected model that is a Gaussian group model is covered by TDAGs.
The following is very brief and we refer to the mentioned literature.

First, note that the directed model of any TDAG without unshielded collid-
ers equals the undirected model of its underlying undirected graph, see Theo-
rem 6.3.14 or [AMP97, Theorem 3.1]. Conversely, a necessary condition for an
undirected graphical model to be a Gaussian group model can be obtained from
[LM07, Theorem 2.2]: an undirected Gaussian graphical model is a transforma-
tion family23 if and only if the graph G has neither 4-cycles nor 4-chains as induced
subgraphs. There are two consequences of these conditions. One is that there
is a way to direct the edges in G so that there are no unshielded colliders. The
other consequence is that this can be done in such a way so that the undirected
model coincides with the directed modelM→

G , and the directed graph must be a
TDAG, see page 7 of the supplementary material of [DKZ13]. In summary, we
have the following equivalence.

23Recall that any Gaussian group model is a transformation family, compare Remark 9.2.2(a).
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Remark 9.5.15 ([AKRS21a, Remark 5.9]). The undirected graphical models that
are Gaussian group models are the TDAG models without unshielded colliders.
They are exactly those models whose sets of tuples of n samples with unbounded
likelihood are Zariski closed for all n ≥ mlte, by Proposition 9.5.13. O

9.6 Discussion and Outlook

In Subsection 9.6.1 we discuss related literature on Gaussian group models and
afterwards, in Subsection 9.6.2, we compare Gaussian group models to log-linear
models from Chapter 7.

9.6.1 Related Literature

In the following we comment on literature related to this chapter respectively to
[AKRS21a]. We start with works that are contained in this thesis.

The companion paper [AKRS21b], presented in Chapter 7, can be seen as a
discrete counterpart of [AKRS21a]. We discuss similarities and differences be-
tween the Gaussian setting and the discrete setting of log-linear models in a
separate subsection below.

The theory of Gaussian group models and its relation to TDAG models
(Section 9.5) stimulated further research on directed Gaussian graphical mod-
els [MRS21]. We present this work in detail in Chapter 10.

Now, we focus on papers that are not co-authored by the author of this thesis.
Recently, there has been a flurry of new results on ML estimation of matrix
and tensor normal models. For matrix normal models, the paper [DKH21] gave
new characterizations of ML estimation and new bounds on ML thresholds. In
Section 9.4 we compared some of their results to those from [AKRS21a].

All ML thresholds for matrix normal models have been completely char-
acterized in [DM21], by crucially using the relations between invariant theory
and ML estimation presented in Section 9.3. Derksen and Makam translate the
problem of computing ML thresholds via the dictionary from Theorem 9.4.1 to
generic semi/poly/stability and use invariant theory for representations of the
n-Kronecker quiver; see Example 1.3.8 for the n-Kronecker quiver.

At first glance, the solution via invariant theory, a completely different math-
ematical area, is certainly surprising and might seem unnatural. A posteriori, the
proof through invariant theory adjusts this first impression. As pointed out in
[DM21, Section 1.3], there is a very interesting change of viewpoint thanks to the
invariant theory perspective. Consider the matrix normal model M⊗

K(m1,m2).
From a statistical point of view, when studying ML thresholds it is natural to
fix the dimensions m1 and m2, and to let the sample size n vary. Then the be-
haviour of ML estimation seems to be rather “wild”, i.e., it is difficult to spot a
pattern; compare [DKH21; DM21]. On the other hand, the representation theory
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of the n-Kronecker quiver highly depends on the number n of arrows.24 Thus,
through the lens of invariant theory, when studying generic semi/poly/stability
it is natural to fix n and let the dimensions m1 and m2 vary. This viewpoint
unravels the seemingly wild behaviour and yields a clear picture! For illustration
and convenience of the reader, we state the main result here.

Theorem 9.6.1 (ML thresholds for matrix normal model, [DM21, Theorem 1.3]).
Consider the matrix normal modelM⊗

K(m1,m2), where K ∈ {R,C}. Let d be the
greatest common divisor of m1 and m2. Set r := (m2

1+m2
2−d2)/(m1m2). Then the

ML thresholds forM⊗
K(m1,m2) satisfy mltb = mlte, and existence and uniqueness

threshold are given as follows:

1. If m1 = m2 = 1, then mlte = mltu = 1.

2. If m1 = m2 > 1, then mlte = 1 and mltu = 3.

3. If m1 6= m2 and r ∈ Z, then mlte = r. If d = 1, then mltu = r, and if
d > 1, then mltu = r + 1.

4. If m1 6= m2 and r /∈ Z, then mlte = mltu =
⌈
m2

1+m2
2

m1m2

⌉
.

Only shortly afterwards, the strong/full correspondence in Theorem 9.3.6 even
led to a full determination of ML thresholds for tensor normal models [DMW22].
There, the authors use that the Castling transform on tensors preserves generic
semi/poly/stability [DMW22, Section 3]. The main result [DMW22, Theorem 1.1]
contains Theorem 9.6.1 as a special case.

Remember that Mg
G for a Zariski closed self-adjoint group G is a totally

geodesic submanifold of PDm(K), Theorem 9.3.1, and that the log-likelihood is a
geodesically convex function onMg

G. This has been observed for matrix normal
models in [Wie12]. Geodesic convexity has been applied in [DKH21; FORW21].
Actually, in [FORW21] it is a crucial tool to study (near) optimal sample com-
plexity of matrix and tensor normal models. The main result for tensor normal
models is [FORW21, Theorem 2.4], which can be strengthened for matrix nor-
mal models [FORW21, Theorem 2.7]. Moreover, the flip-flop algorithm is shown
to efficiently compute the MLE with high probability, [FORW21, Theorems 2.9
and 2.10]. Theorem 9.3.1 and the outlined algorithmic consequences in Subsec-
tion 9.3.1 raise the following questions on generalizing the studies of [FORW21].

Problem 9.6.2. Let G ⊆ GLm(K) be a Zariski closed self-adjoint group and con-
sider the Gaussian group model Mg

G. Can one, similarly to [FORW21], charac-
terize (near) optimal sample complexity ofMg

G using geodesic convexity? More-
over, do the first and/or second order method from [BFG+19] yield, with high
probability, an efficient computation of the MLE?

Now, we turn from geodesic convexity to Gaussian group models that are
convex in the usual Euclidean sense. Such models are studied in [Ish21]. A
complete characterization of Euclidean convex Gaussian group models is provided

24Indeed, for n = 1 the quiver is of finite representation type, for n = 2 the quiver is tame
while for n = 3 it is so-called wild. We refer to [DW17] for details.
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in [Ish21, Proposition 2 and Theorem 2]. Invariant theory is an important proof
ingredient; more precisely, Vinberg theory (see [Wal17, Section 3.7]) is applied.
Furthermore, the uniqueness threshold mltu is computed [Ish21, Theorem 4]. It
is also shown that, if there exists a unique MLE, then the MLE is a rational
function in the samples [Ish21, Theorem 3].

In Section 9.4 we studied ML estimation for matrix normal models via opera-
tor scaling (i.e., the left-right action). We remark that operator scaling was also
used in [FM20] to study a different estimator from statistics: Tyler’s M estimator
for elliptical distributions. The authors prove results on the sample complex-
ity [FM20, Theorems 1.1 and 1.2] of the estimator and they show that Tyler’s
iterative procedure converges quickly with high probability [FM20, Theorem 1.3].

9.6.2 Comparison with log-linear models

We highlight similarities and differences between the multivariate Gaussian set-
ting from [AKRS21a] studied in this chapter and the discrete setting of log-linear
models from [AKRS21b] presented in Chapter 7. This is based on [AKRS21b,
Section 6]. We start by comparing the two statistical settings.

In the discrete setting, a model is given as a subset of the (m−1)-dimensional
probability simplex ∆m−1 ⊆ Rm. In comparison, in the multivariate Gaussian
setting, a model is given by a set of concentration matrices in the cone of positive
definite matrices PDm(K). For a discrete modelM ⊆ ∆m−1 the data/sufficient
statistics is a vector of counts u ∈ Zm≥0 with u+ = n the total numbers of obser-
vations. The log-likelihood given u at p ∈ M is

∑m
j=1 uj log(pj), see (6.4). In

comparison, for a Gaussian model the data is a tuple of samples Y ∈ (Km)n, the
sample covariance matrix SY = 1

n

∑n
i=1 YiY

†
i provides a sufficient statistics and

the log-likelihood at Y is given by log det(Ψ)− tr(ΨSY ), see (6.8).

Stability. In both settings we link notions of stability under a group action to
ML estimation in statistical models: for log-linear models in Theorem 7.2.1 and
for Gaussian group models in, e.g., Theorems 9.2.7 and 9.3.6. However, a main
difference is where the dependence on the data enters. For log-linear models we
consider an action of GTd(C) on Cm which depends on the data, and we always
study stability of the all-ones vector 1m. In contrast, for a Gaussian group model
Mg

G, where G ⊆ GLm(K), we always use the action of G on the sample space
(Km)n via left-multiplication, while we consider stability notions for the observed
data, i.e., the tuple of samples.

For log-linear models, the log-likelihood is always bounded from above and the
all-ones vector cannot be unstable. In contrast, in the Gaussian setting a tuple of
samples is unstable if and only if the log-likelihood is not bounded from above. In
both cases, semistability is equivalent to the log-likelihood being bounded from
above and polystability is equivalent to the existence of an MLE. In the log-linear
case, the MLE is unique if it exists, while for Gaussian group models there may be
infinitely many. In fact, the existence of a unique MLE for Gaussian group models
often relates to stability of a tuple of samples, see Theorems 9.3.6 and 9.5.9. In
contrast, for log-linear models the all-ones vector is never stable.
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MLE computation. An important similarity between the log-linear and Gaus-
sian settings is that norm minimizers under the respective group actions give an
MLE (if it exists), see Theorem 7.2.3 and Theorem 9.2.7. For log-linear models,
we compute real MLEs from complex torus orbits. For Gaussian group models,
we compute the MLE over K ∈ {R,C} from orbits over the same field K. If the
all-ones vector is semistable but not polystable, Theorem 7.2.3 yields the extended
MLE. However, in the Gaussian case, if a tuple of samples Y is semistable but
not polystable there is usually no meaningful notion of extended MLE, compare
Remark 6.3.4.

Scaling. From the point of view of scaling algorithms, Sinkhorn’s algorithm is a
common origin to both the log-linear and the Gaussian settings. As we described
in Section 7.3, Sinkhorn scaling to target marginals is iterative proportional scal-
ing (IPS) for the independence model and this extends to IPS for a general
log-linear model. On the Gaussian side, Sinkhorn scaling generalizes to alternat-
ing minimization procedures for computing MLEs of matrix normal models and
tensor normal models. This algorithm is used both in invariant theory for norm
minimization and in statistics to compute the MLE, compare Subsection 9.4.4.

Since norm minimizers yield an MLE in both settings, one can use scaling
algorithms from invariant theory to approximate an MLE; compare right hand
side of Figures 7.1 and 9.1. Remember that the above discussion naturally mo-
tivates to regard geodesic convex methods for Norm Minimization 3.1.3 and the
Scaling Problem 3.1.4 as IPS for Gaussian group modelsMg

G with Zariski closed
self-adjoint group G, compare Subsection 9.3.1.

Exponential Families and Transformation Families. We conclude by point-
ing out the following with respect to exponential families and transformation fam-
ilies, compare Definition 6.1.4.25 Remember that log-linear models are discrete
regular exponential families [Sul18, Section 6.2]. However, in general they are not
transformation families: the group of bijections on the sample space [m] is finite
and hence cannot act transitively on an infinite log-linear model.

Gaussian group models are examples of transformation families, compare Re-
mark 9.2.2, and they are submodels of the saturated Gaussian model, which is a
Gaussian regular exponential family [Sul18, Section 6.3]. In general, a Gaussian
group model itself cannot be a regular exponential family. Otherwise an MLE
would be unique if it exists [Sul18, Corollary 7.3.8], but this is usually not the
case, compare Proposition 9.3.4 or Proposition 9.5.10.

Despite the mentioned differences between the discrete and Gaussian setting,
it is interesting and natural to ask the following.

Problem 9.6.3. Is there a unifying concept that links invariant theory to max-
imum likelihood estimation, e.g., in the context of (sub)models of exponential
families? Or in the context of transformation families?

25[AKRS21b, Section 6] imprecisely states that “log-linear models and the Gaussian group
models [...] are examples of exponential transformation families”. The paragraph clarifies
this, also in view of Definition 6.1.4 used in this thesis. We remind the reader that the term
transformation family is ambiguous in the literature.
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More specifically, is there a unifying theory that covers Chapters 7 and 9 at
the same time?26

26Admittedly, an affirmative answer to this specific question does not seem very likely to the
author, given the mentioned differences.
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Chapter 10

Restricted DAG Models

Graphical models play a fundamental role in statistics and have manifold
applications [Lau96; MDLW19]. Intuitively, the graph encodes the following
statistical meaning: each vertex represents a random variable, and the edges
between variables reflect their statistical dependence [VP90]. In the Gaussian
case we already came across two kinds of graphical models. Example 6.3.10
defined undirected Gaussian graphical models, while Definition 6.3.11 recalled
Gaussian graphical models on directed acyclic graphs (DAGs). Remember that
DAG models are also called Gaussian Bayesian networks and they are linear
structural equation models with independent errors, see [Drt18] and [Sul18, Sec-
tion 16.2]. DAG models have been applied to many different contexts such as cell
signalling [SPP+05], gene interactions [FLNP00] and causal inference [Pea09].

In this chapter, we introduce and study Gaussian graphical models on DAGs
with coloured vertices and edges. The colours impose symmetries in the model:
if two vertices or two edges have the same colour, then their parameters in the
model must be the same. We call such models RDAG models, where the ‘R’
stands for restricted, cf. [HL08]. RDAG models contain DAG models as a special
case, Remark 10.1.10. In that regard, many results of this chapter generalize
statements on (T)DAG models from Sections 6.3 and 9.5.

The whole chapter is based on the preprint [MRS21], which is joint work with
Visu Makam and Anna Seigal.

Motivation. We state three main motivations for studying RDAG models.
First, RDAG models are a natural analogue of so-called restricted concen-

tration (RCON) models, which have been introduced in [HL08]; compare Defini-
tion 10.2.4 below. RCON models are submodels of undirected Gaussian models
(Example 6.3.10) and obey symmetries among the entries of the concentration
matrix according to a graph colouring. It is interesting to study possible connec-
tions between RDAG and RCON models, similar to the known connection be-
tween DAG models and undirected Gaussian graphical models in Theorem 6.3.14.
This may allow to study RCON models through the lens of RDAG models.

Second, vertex and edge symmetries appear in various applications, such as in
the study of longitudinal data [AFS16; VAAW16], or clustered variables [GM15;
HL08]. Therefore, it is desirable to include these symmetries in the model it-
self. The coloured directed graph gives an intuitive pictorial description of these
symmetry conditions.

Third, we aim to decrease the maximum likelihood (ML) thresholds (Defi-
nition 6.3.5), since for applications it is desirable to have small ML thresholds.

201
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We comment that innovative ideas have been used to find maximum likelihood
thresholds in graphical models [Buh93; DFKP19; GS18; Uhl12] and for estimat-
ing MLEs from too few samples [FHT08; WZV+04]. Removing edges from a
graph can lower the threshold [Uhl12; Lau96], but there is a trade-off: removing
edges imposes more conditional independence among the variables. This is why,
instead, we aim to decrease the maximum likelihood threshold by introducing
symmetries.

Let us illustrate these motivations in the following running example that we
shall use throughout the chapter.

Example 10.0.1. Consider the coloured graph 1 3 2 , with blue (circu-
lar) vertices {1, 2}, black (square) vertex 3 and two red edges. The RDAG model
is the linear structural equation model

y1 = λy3 + ε1, y2 = λy3 + ε2, y3 = ε3,

where ε1, ε2 ∼ N (0, ω) and ε3 ∼ N (0, ω′), i.e., ω is the variance of the blue
vertices 1 and 2, and ω′ is the variance of black vertex 3. The third parameter λ
is the regression coefficient given by a red edge.

Regarding our three motivations we note the following. First, Example 10.2.5
will show that the above RDAG model equals its induced RCON model. Hence,
one may study the latter through the former. Second, we use this example to
model the dependence of two daughters’ heights on the height of their mother,
and we compute the MLE given some sample data; see Example 10.3.10. Third,
in Example 10.3.7 we will see that the ML threshold mltu for uniqueness is one.
In contrast, if we remove the colours the resulting DAG model has uniqueness
threshold two, compare Corollary 6.3.19. ♦

Related Models. To the knowledge of the authors of [MRS21], RDAG models
have not been defined before in the literature. We comment on some related
models. The assumption of equal variances from [PB14] is the special case of an
RDAG model, where all vertex colours are the same. Special colourings encode
exchangeability between variables, or invariance under a group of permutations.
A graphical model is combined with group symmetries in the directed setting
in [Mad00] and in the undirected setting in [AM98; SC12]. RDAG models also
relate to the fused graphical lasso [DWW14], which penalises differences between
parameters on different edges, whereas in an RDAG model the parameters on
edges of the same colour must be equal.

Main Results. As a generalization of Theorem 6.3.16 for DAG models, we
characterize the existence and uniqueness of MLEs via linear algebraic proper-
ties of the sample data, see Theorem 10.3.6. We give a closed-form formula
for MLEs in an RDAG model, as a collection of least squares estimators, see
Algorithm 10.1. In Theorem 10.4.9 we provide upper and lower bounds on ML
thresholds for RDAG models. Our results show that RDAG thresholds are less or
equal to the DAG thresholds, and that high symmetry decreases the thresholds.
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Thus, the third motivation about decreasing ML thresholds is achieved. Further-
more, we compare RDAG MLEs to uncoloured DAG MLEs via simulations in
Section 10.5. All results hold with an assumption on the graph colouring called
compatibility (Definition 10.1.6), which allows to view RDAG models in a natural
way as Gaussian models via symmetrization. It is an open problem to extend our
results to the non-compatible setting, as well as to directed graphs with cycles.
It is also an open problem to find the exact ML thresholds, see Problem 10.4.10.

Regarding RCON models, the undirected analogue of RDAG models, we note
the following. Although a motivation for the graph colouring in RCON models
is to lower the maximum likelihood threshold, there are relatively few graphs for
which the threshold is known: colourings of the four cycle are studied in [Uhl12,
§6], [SU10, §5], while an example with five vertices is [Uhl12, Example 3.2]. In cer-
tain cases, RDAG models are equivalent to RCON models. We exactly determine
the conditions under which this occurs in Theorem 10.2.8. As a consequence, we
obtain an entire class of RCON models where conditions for MLE existence and
uniqueness can be found by appealing to our results on RDAGs.

Finally, we draw connections to stability notions and to Gaussian group mod-
els, which are studied in Chapter 9. Namely, we extend the dictionary between
ML estimation and stability notions to RDAGs in Theorem 10.6.4. This requires
the extended concept of stability under sets from Definition 8.2.1. Furthermore,
we identify RDAGs that are Gaussian group models in Proposition 10.7.3 and
generalize a proof via Popov’s Criterion from the TDAG setting (Theorem 9.5.9)
to RDAGs that are Gaussian group models. We also obtain in the group situation
a bijection between the stabilizer and the set of MLEs, Proposition 10.7.9.

While not evident in the final presentation, the “invariant theory perspective”
fostered the understanding and created concepts needed to obtain many of the
results. For example, trying to link RDAG models in a natural way to Gaus-
sian models via symmetrization lead to the notion of a compatible colouring,
while trying to generalize a proof via Popov’s Criterion resulted in the concept
of augmented sample matrices (Definition 10.3.1).

Organization and Assumptions. Section 10.1 defines RDAG models, com-
patible colourings and states basic properties. We compare RDAG and RCON
models in Section 10.2. Afterwards, we characterize ML estimation for RDAG
models in Section 10.3, which enables us in Section 10.4 to bound the ML thresh-
olds. Section 10.5 presents some simulations. We end with connections to stability
and to Gaussian group models in Sections 10.6 and 10.7, respectively.

In contrast to the paper [MRS21] we always work in parallel over R and C.1
Therefore, K ∈ {R,C} and we remind the reader that (·)† is the Hermitian
transpose, which is just the transpose (·)T if K = R.

1[MRS21] usually worked over R, but it was noted that the results extend to the complex
case [MRS21, Remark 2.11].
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10.1 Introducing RDAG models

In the following we introduce restricted DAG (short: RDAG) models and give sev-
eral illustrating examples. Moreover, we define the important concept of a com-
patible colouring, which is a common assumption in Chapter 10. In Lemma 10.1.8
we prove important properties of a compatible colouring which we will use through-
out. As a main result, we show that an RDAGmodel admits a natural parametriza-
tion as a Gaussian model via symmetrization if and only if the colouring is com-
patible, see Proposition 10.1.9. This result is analogous to Lemma 9.5.2. We
start with the definition of a coloured DAG.

Definition 10.1.1. A coloured DAG is a tuple (G, c), where G = (I, E) is a DAG
on vertices I and directed edges E, and

c : I ∪ E → C

is a colouring of the vertices and edges. Vertex i ∈ I has colour c(i) ∈ C , and
edge j → i has colour c(ij) ∈ C . We sometimes denote the vertex colour c(i) by
c(ii), with no ambiguity because a DAG cannot have loops. N

In Definition 6.3.11 we introduced DAG models. Similarly, we can define
sub-models of these by introducing symmetries among the parameters, which are
given by a graph colouring.

Definition 10.1.2 ([MRS21, Definition 2.1]). The restricted DAG (RDAG) model
M→

(G,c) on the coloured DAG (G, c) is the set of concentration matrices Ψ =

(Im−Λ)†Ω−1(Im−Λ), where Λ ∈ Km×m satisfies

1. λij = 0 unless j → i in G

2. λij = λkl whenever edges j → i and l→ k have the same colour

and the diagonal matrix Ω ∈ PDm(K) has positive entries and satisfies

3. ωii = ωjj if vertices i and j have the same colour.

The model M→
(G,c) is given by the linear structural equation y = Λy + ε, where

y ∈ Km and ε ∼ N (0,Ω). By construction,M→
(G,c) ⊆M→

G . N

Remember from Remark 6.3.12 that we always assume that i < j whenever
i← j in G, i.e., “parents are older than children”.

Example 10.1.3 ([MRS21, Example 2.2]). Let (G, c) be 1 3 2 , the
coloured DAG from Example 10.0.1. The RDAG model M→

(G,c) ⊆ PD3(K) is
parametrized by matrices

Λ =

0 0 λ
0 0 λ
0 0 0

 and Ω =

ω 0 0
0 ω 0
0 0 ω′


where λ ∈ K and ω, ω′ ∈ R>0. ♦
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Remark 10.1.4 (based on [MRS21, Remark 2.3]). Lemma 9.5.2 shows that any
DAG model M→

G admits a natural set A(G) such that M→
G = Mg

A(G). It is
desirable to view an RDAG model M→

(G,c) in a natural, similar way as a Gaus-
sian model via symmetrization. In fact, the obtained parametrization has useful
consequences. First, it leads to a condition on the graph colouring, called com-
patibility, which is indispensable in our results of Sections 10.3 and 10.4. Second,
it is helpful when comparing directed and undirected coloured models in Sec-
tion 10.2. Third, it allows to generalize the connections between TDAG models
and stability notions to the setting of RDAG models, see Section 10.6 and 10.7. O

Given a coloured DAG (G, c), we define the set of upper triangular matrices

A(G, c) :=

a ∈ GLm(K)

∣∣∣∣ (I) aij = 0 for i 6= j with j 6→ i in G
(II) aii = akk if c(i) = c(k)
(III) aij = akl if c(i← j) = c(k ← l)

. (10.1)

Note that A(G, c) is contained in the set A(G) from Equation (9.17): their zero
patterns agree and A(G, c) has further equalities imposed by the colouring c.

Example 10.1.5 ([MRS21, Example 2.4]). For the coloured DAG 1 3 2
we have

A(G, c) =


d1 0 r

0 d1 r
0 0 d2

 : d1, d2 ∈ K×, r ∈ K

 .

and hence

Mg

A(G,c) =


|d1|2 0 rd1

0 |d1|2 rd1

rd1 rd1 2|r|2 + |d2|2

 ∣∣∣∣∣ d1, d2 ∈ K×, r ∈ K

 . (10.2)

is the corresponding Gaussian model via symmetrization. ♦

For DAG models we always have M→
G = Mg

A(G), compare Lemma 9.5.2. In
contrast, the modelsM→

(G,c) andM
g

A(G,c) do not have to be equal. The following
assumption on a colouring turns out to be necessary and sufficient for equality.

Definition 10.1.6 ([MRS21, Definition 2.5]). A colouring c of a directed graph
is compatible, if:

(i) vertex colours and edge colours are disjoint; and

(ii) whenever edges j → i and l → k have the same colour, then the child
vertices i and k have the same colour, i.e., c(ij) = c(kl) implies c(i) = c(k).

Note: compatibility does not impose equality of parent colours c(j) and c(l). N

Remark 10.1.7 (Statistical meaning of compatibility, [MRS21, Remark 2.6]).
In an RDAG model we do not impose equalities between Ω and Λ. The entry ωii is
a variance, while λkl is a regression coefficient, so setting them to be equal would
be difficult to interpret. Hence the vertex and edge colours can always be thought
of as disjoint, as in compatibility condition (i). It ensures that Equation (10.1)
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does not impose equalities between a diagonal and an off-diagonal entry. Com-
patibility condition (ii) has the statistical interpretation that the same regression
coefficient appearing in an expression for two variables implies that their error
variances agree. This extra assumption is indispensable in many of the upcoming
results and proofs. It is a directed analogue to the condition appearing in [HL08,
Proposition 1]. O

Before we relate M→
(G,c) and Mg

A(G,c), let us prove important properties of
a compatible colouring.2 These will be frequently, often implicitly, used in the
upcoming sections. To state the results, we define for a coloured DAG (G, c) the
set of parent relationship colours of vertex colour s as

prc(s) := {c(ij) | there exists j → i in G with c(i) = s}. (10.3)

In words, the set prc(s) contains the colours of all edges that point towards some
vertex of colour s.

Lemma 10.1.8. Let (G, c) be a coloured DAG with compatible colouring c. Then:

(i) We have a disjoint union c(E) =
⊔
s∈c(I) prc(s). (Note that some of the

prc(s) may be empty.)

(ii) Every matrix a ∈ A(G, c) is uniquely determined by the following data: an
entry as,s ∈ K× for each vertex colour s ∈ c(I) and an entry as,t ∈ K for
the edge colour encoded by s ∈ c(I) and t ∈ prc(s).
Similarly, matrices Ω and Λ as in Definition 10.1.2 are uniquely determined
by entries ωs,s ∈ R>0 and λs,t ∈ K, respectively.

(iii) The set T of diagonal matrices in A(G, c) is an algebraic torus and for
t ∈ T , a ∈ A(G, c) it holds that ta ∈ A(G, c).

(iv) Let U be the set of unipotent upper triangular matrices in A(G, c). For any
a ∈ A(G, c) there exist unique t(a) ∈ T and u(a) ∈ U with a = t(a)u(a).

(v) The group TSL = A(G, c)SL ∩ T is in general just a diagonalizable group,
i.e., it does not need to be connected. All other statements in (iii) and (iv)
also apply to A(G, c)SL using TSL and USL = U .

Proof. To prove (i), let j → i be an edge in G. Then c(ij) ∈ prc(s1), where
s1 := c(i), and hence c(E) =

⋃
s∈c(I) prc(s). Moreover, if c(ij) ∈ prc(s2) then

there is some l → k in G with c(k) = s2. By Definition 10.1.6(ii), compatibility
implies s1 = s2 and therefore the sets prc(s), s ∈ c(I) are disjoint.

For (ii), note that by Definition 10.1.6(i) the Equation (10.1) never requires
an equality of a diagonal with an off-diagonal entry of a ∈ A(G, c). Therefore, a
is uniquely determined by a non-zero diagonal entry for each vertex colour and
an entry for each edge colour. The edge colours are in bijection with tuples (s, t)
where s ∈ c(I) and t ∈ prc(s), by part (i). This finishes the argument for matrix
a and similarly one obtains the claim for Ω and Λ.

2These properties occur throughout [MRS21], but were not collected in a separate theorem
environment.
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For (iii), one directly verifies, using part (ii), that T is a group which is
naturally isomorphic to the algebraic torus (K×)|c(I)|. Now, let t ∈ T , a ∈ A(G, c)
and set b := ta. Since a ∈ A(G) and multiplication with an invertible diagonal
matrix preserves the support, we have b ∈ A(G). It remains to check bij = bkl
whenever c(ij) = c(kl). First, note that by condition (i) of compatibility there
are no equalities between diagonal and off-diagonal entries of b required. Second,
for two vertices i, k with c(ii) = c(kk) we have tii = tkk, aii = akk and so
bii = tiiaii = tkkakk = bkk. Third, for edges j → i and l → k of same colour
we have aij = akl and condition (ii) of compatibility implies c(ii) = c(kk), so
tii = tkk. Therefore, bij = tiiaij = tkkakl = bkl. This proves (iii).

To show (iv), let a ∈ A(G, c) and, taking part (ii) into account, define t ∈ T
via tss := ass for s ∈ c(I). By part (iii), t−1 ∈ T and u := t−1a ∈ A(G, c). By
construction, we have a = tu and uss = 1 for all vertex colours s, so u ∈ U . This
shows existence. To prove uniqueness, let t′ ∈ T and u′ ∈ U such that a = t′u′.
As u′ is unipotent we must have (t′)ss = ass for all s ∈ c(I), so t = t′. The latter
implies u′ = (t′)−1a = t−1a = u.

For (v), consider the set A(G, c)SL = A(G, c)∩ SLm(K). In this situation, TSL

is an algebraic group that is naturally isomorphic to the diagonalizable group{
(tss)s ∈ (K×)|c(I)| |

∏
s t
αs
ss = 1

}
, where αs is the number of vertices of colour s.

This group does not need to be connected by compare Proposition 1.1.17, as the
character group is X(TSL) ∼= Z|c(I)|/

(
Z · (αs)s∈c(I)

)
may have torsion elements.3

Now, for t ∈ TSL and a ∈ A(G, c)SL, we have det(ta) = 1 and ta ∈ A(G, c) by
part (iii) for A(G, c). Thus, ta ∈ A(G, c)SL. Furthermore, any a ∈ A(G, c)SL has a
unique decomposition a = t(a)u(a) inA(G, c) by part (iv). We have det(u(a)) = 1
as u(a) is unipotent, and thus det(a) = 1 yields det(t(a)) = 1 as well. We deduce
that the unique decomposition a = t(a)u(a) lives in A(G, c)SL.

A main feature of compatibility is relating the modelsM→
(G,c) andM

g

A(G,c).
4

Proposition 10.1.9 ([MRS21, Proposition 2.7]). Fix a coloured DAG (G, c). The
RDAG modelM→

(G,c) is equal toMg

A(G,c) if and only if colouring c is compatible.

Remark 10.1.10. A usual DAG model M→
G on G is an RDAG model with com-

patible colouring, as follows. Let c be a colouring that assigns to each vertex
and to each edge a distinct colour. Then c is compatible, M→

G = M→
(G,c) and

A(G) = A(G, c). In this regard, Proposition 10.1.9 generalizes Lemma 9.5.2. O

To prove the proposition, it is instructive to think of M→
(G,c) and Mg

A(G,c)
imposing zero patterns and symmetries on certain matrix decompositions.

Recall that the Cholesky decomposition of Ψ ∈ PDm(K) is given by the unique
upper triangular matrix a := chol(Ψ) ∈ Km×m with real-valued, positive diagonal
entries such that Ψ = a†a. The modelMg

A(G,c) imposes zeros and symmetries in
the Cholesky decomposition, as follows.

3X(TSL) has torsion if and only if the greatest common divisor of all αs equals one.
4Trying to relate these models was actually how the authors of [MRS21] came up with the

concept of a compatible colouring.
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Lemma 10.1.11 ([MRS21, Lemma 2.8]). Fix a coloured DAG (G, c) with com-
patible colouring c. Then Mg

A(G,c) is the set of positive definite matrices with
Cholesky decomposition a†a for some a ∈ A(G, c).

Proof. The set Mg

A(G,c) consists of all positive definite matrices of the form a†a

for some a ∈ A(G, c), see Equation (8.1), and all matrices in A(G, c) are upper
triangular by our assumption on the ordering of the vertices.

It remains to show that for any Ψ = b†b, where b ∈ A(G, c), its Cholesky
decomposition lies in A(G, c). For i ∈ [m], set tii := bii|bii|−1. This defines a
diagonal matrix t such that t†t = Im and t ∈ A(G, c) as b ∈ A(G, c). Thus,
a := tb ∈ A(G, c) using Lemma 10.1.8(iii). By construction, a has positive
diagonal entries aii = |bii| and hence a†a is the Cholesky decomposition of Ψ.

The LDL decomposition writes a positive definite matrix Ψ ∈ PDm(K) as
LDL†, where D is diagonal with positive entries, and L ∈ Km×m is lower tri-
angular and unipotent (i.e., its diagonal entries are equal to one). With these
properties L and D are uniquely determined. The LDL decomposition is closely
related to the factorization Ψ = (Im−Λ)†Ω−1(Im−Λ) from Equation (6.14): the
LDL decomposition is D = Ω−1 and L = (Im−Λ)†. Hence, an RDAG model
M→

(G,c) imposes zeros and symmetries in the LDL decomposition. The LDL and
Cholesky decompositions are are related by:

Cholesky from LDL: a := chol(Ψ) = Ω−1/2(Im−Λ),

LDL from Cholesky: Ω = diag(a−2
11 , . . . , a

−2
mm), Λ = Im− diag(a−1

11 , . . . , a
−1
mm)a

For DAG models, we have shownM→
G =Mg

A(G), Lemma 9.5.2, by comparing
the support conditions in the two decompositions. Similarly, we prove Propo-
sition 10.1.9 for RDAG models by comparing zero patterns and symmetries in
the LDL and Cholesky decomposition. For this, Lemma 10.1.8(iii) is the crucial
property of a compatible colouring.

Proof of Proposition 10.1.9. Let colouring c be compatible. Recall, that condi-
tion (i) of compatibility implies that Equation (10.1) does not impose equalities
between a diagonal and an off-diagonal entry of a ∈ A(G, c).

First, let Ψ = (Im−Λ)†Ω−1(Im−Λ) ∈ M→
(G,c) as in Definition 10.1.2. The

colour conditions on Ω ∈ PDm(K) show that the diagonal matrix t := Ω−1/2 is
in A(G, c). Moreover, Im−Λ ∈ A(G, c) as follows. First, it is unipotent upper
triangular, as Λ is strictly upper triangular. In particular, the vertex colour
conditions are fulfilled as all diagonal entries are equal to one. Second, the support
and colour conditions on Λ imply that the off-diagonal entries of Im−Λ satisfy the
corresponding conditions for A(G, c). By Lemma 10.1.8(iii), a := Ω−1/2(Im−Λ) ∈
A(G, c) and hence Ψ = a†a ∈Mg

A(G,c).
Conversely, let Ψ ∈ Mg

A(G,c). Then the Cholesky decomposition is Ψ = a†a

for a ∈ A(G, c), by Lemma 10.1.11. Since a has positive diagonal entries and
a ∈ A(G, c), ωii := a−2

ii defines a diagonal Ω ∈ PDm(K) satisfying the colour
symmetries. Moreover, u := diag(a−1

11 , . . . , a
−1
mm)a is, by construction, unipotent

upper triangular and, by Lemma 10.1.8(iii), u ∈ A(G, c). Therefore, Λ = (Im−u)
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is strictly upper triangular and satisfies the support and colour conditions from
Definition 10.1.2. This shows Ψ ∈ M→

(G,c). Altogether, a compatible colouring
impliesM→

(G,c) =Mg

A(G,c).
Now, assume the colouring is not compatible. We will exhibit some Ψ ∈

M→
(G,c), in terms of Ω and Λ, such that Ψ /∈Mg

A(G,c). For this, let Ψ = a†a be the
Cholesky decomposition, i.e.,

aij =

{
ω
−1/2
ii if i = j

−ω−1/2
ii λij if i 6= j.

(10.4)

If Ψ = b†b for some b ∈ A(G, c) then, similar to the proof of Lemma 10.1.11, there
is some diagonal matrix t with tb = a and |tii| = 1 for all i ∈ [m].5 In particular,
|bij| = |aij| for all i, j ∈ [m].

First, if Definition 10.1.6(i) does not hold, then there is a vertex k ∈ [m]
and an edge j → i with c(kk) = c(ij). The RDAG model imposes no relation
between ωkk and λij, so let Ψ be given by some Ω and Λ with ωkk = 1 and
λij = 0. Then |akk| = 1 and |aij| = 0, by (10.4). Hence, Ψ /∈ Mg

A(G,c) as
otherwise |bkk| = |akk| = 1 6= 0 = |aij| = |bij| violates the colour conditions for
A(G, c).

Second, if Definition 10.1.6(ii) does not hold, then there exist edges j → i and
l → k with c(ij) = c(kl) but c(i) 6= c(k). We choose Ψ given by some Ω and Λ
with ωii = 1, ωkk = 1

4
and λij = λkl = 1. Then |aij| = 1 and |akl| = 2, by (10.4).

Again, we must have Ψ /∈Mg

A(G,c) as otherwise |bij| = |aij| = 1 6= 2 = |akl| = |bkl|
would violate the colour conditions for A(G, c).

Example 10.1.12 ([MRS21, Example 2.10]). We return to the coloured DAG
1 3 2 from Examples 10.1.3 and 10.1.5. The colouring is compatible,
because the sets of vertex and edge colours are disjoint, and the children of both
red edges have the same colour. Hence, Proposition 10.1.9 shows that Mg

A(G,c)
from Equation (10.2) is equal toM→

(G,c). ♦

10.2 Comparison of RDAG and RCON models

In this section we compare RDAG models to their undirected analogue: re-
stricted concentration (RCON) models which were introduced in [HL08]. Similar
to RDAG models, RCON models are sub-models of undirected Gaussian graphi-
cal (CON) models, see Example 6.3.10, and impose symmetries on concentration
matrices according to a graph colouring. In Theorem 10.2.8 we precisely char-
acterize when an RDAG model equals its induced RCON model. To prove this
theorem, we need the similar statement for DAG models and CON models, Theo-
rem 6.3.14. It is well-known in the literature, see [AMP97, Theorem 3.1] or [Fry90,
Theorem 5.6]. Still, it is instructive to start with a proof of Theorem 6.3.14, since
the presented method generalizes to give a proof of Theorem 10.2.8.

5However, we cannot deduce a ∈ A(G, c), because compatibility is needed for
Lemma 10.1.8(iii).
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Given a DAG G, remember that Gu denotes the corresponding undirected
graph, which is obtained by forgetting the direction of each edge in G. For
convenience, we restate Theorem 6.3.14.

Theorem 10.2.1 (Theorem 6.3.14 restated). Let G be a DAG. The DAG model
M→
G is equal to the undirected Gaussian graphical modelMud

Gu on Gu if and only
if G has no unshielded colliders.

We prove Theorem 10.2.1 via two propositions. Note that these propositions
and their proofs only appear in the first arXiv version of [MRS21], e.g., the
following is Proposition 3.8 in the first arXiv version.

Proposition 10.2.2. Let G be a DAG. Then M→
G ⊆ Mud

Gu if and only if G has
no unshielded colliders.

Proof. The DAG modelM→
G equalsMg

A(G), by Lemma 9.5.2. Assume G has an
unshielded collider i k j. In particular, Gu has no edge between i and j,
so Ψij = Ψji = 0 for all Ψ ∈ Mud

Gu . Let a ∈ A(G) be given by aki = akj = 1,
all = 1 for all l ∈ [m] and all other entries zero. Then (a†a)ij = akiakj = 1 6= 0
and hence a†a /∈Mud

Gu .
Conversely, ifMg

A(G) =M→
G *Mud

Gu then there is a ∈ A(G) with a†a /∈Mud
Gu .

Thus, a†a violates the off-diagonal zero pattern of Mud
Gu , i.e., there is a pair of

indices i 6= j such that there is no edge between i and j in Gu but (a†a)ij 6= 0.
Since (a†a)ij =

∑m
k=1 akiakj, some product akiakj must be non-zero, i.e., there

must exist edges i k j in G. This is an unshielded collider, because Gu
(and hence G) has no edge between i and j.

The following is Proposition 3.9 in the first arXiv version of [MRS21].6

Proposition 10.2.3. If a DAG G has no unshielded colliders, thenMud
Gu ⊆M→

G .

Proof. Given a concentration matrix Ψ ∈ Mud
Gu , we show Ψ ∈ Mg

A(G) by proving
that its Cholesky decomposition a := chol(Ψ) satisfies a ∈ A(G). The entries of
the upper triangular matrix a are determined, for l ∈ [m] and i < j ≤ m, by

al,l =

(
Ψl,l −

l−1∑
k=1

|ak,l|2
)1/2

and ai,j =

(
Ψi,j −

i−1∑
k=1

ak,iak,j

)
a−1
i,i , (10.5)

see [TB97, Lecture 23].7 Note that the expression under the square root in (10.5)
is indeed a positive real number, compare [TB97, Lecture 23].

We have to ensure the support conditions of A(G) for the off-diagonal entries
of a. For this, let i, j ∈ [m], i < j such that j 6→ i in G. Then Gu has no edge
between j and i. Therefore, Ψi,j = 0 using that Ψ ∈ Mud

Gu . Moreover, we claim
that ak,iak,j = 0 holds for all k ∈ [i − 1]. Indeed, otherwise i → k ← j would
be an unshielded collider in G, which contradicts the assumption. Altogether, we
deduce ai,j = 0 using (10.5). This proves a ∈ A(G) as desired.

6The proof has been simplified by taking Equation (10.5) for granted.
7Equation (10.5) yields an iterative algorithm to compute the Cholesky decomposition a.
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Combining Propositions 10.2.2 and 10.2.3 proves Theorem 10.2.1.

Proof of Theorem 10.2.1. An unshielded collider in G implies M→
G * Mud

Gu , by
Proposition 10.2.2, and hence prevents equality of the models. The absence of
unshielded colliders implies M→

G ⊆ Mud
Gu (Proposition 10.2.2) and Mud

Gu ⊆ M→
G

(Proposition 10.2.3).

Next, we define RCON models as in [HL08]. For this, a coloured undirected
graph is a tuple (G, c), where G = (I, E) is an undirected graph and the map

c : I ∪ E → C

assigns a colour to each vertex and to each edge.

Definition 10.2.4 (see [HL08, §3]). The RCON model Mud
(G,c) on the coloured

undirected graph (G, c) consists of concentration matrices Ψ ∈ PDm(K) with

(i) Ψij = Ψji = 0 whenever i j is not an edge in G

(ii) Ψii = Ψjj whenever c(i) = c(j),

(iii) Ψij = Ψkl whenever i < j and k < l such that c(i j) = c(k l).
Note that this implies Ψji = Ψij = Ψkl = Ψlk since Ψ† = Ψ.

By part (i),Mud
(G,c) is a sub-model of the modelMud

G from Example 6.3.10. N

Let (G, c) be a coloured DAG. Similarly to the construction of Gu, we obtain
a coloured undirected graph (Gu, c) by forgetting the edge directions in G. All
vertex and edge colours are inherited. We callMud

(Gu,c) the RCON model induced
by the RDAG model M→

(G,c). Let us compare RDAG models and their induced
RCON models in two examples.

Example 10.2.5 (RDAG = RCON, [MRS21, Example 3.1]). We revisit our
running example 1 3 2 . The corresponding RCON model has coloured
undirected graph 1 3 2 , with blue (circular) vertices 1 and 2, black
(square) vertex 3, and red edges. By Definition 10.2.4, the RCON model is the
set of positive definite matrices of the form

Ψ =

δ1 0 %
0 δ1 %
% % δ2

 , where % ∈ K and δ1, δ2 ∈ R>0.

Since the colouring is compatible, the RDAG model M→
(G,c) is equal to Mg

A(G,c)
from Equation (10.2). Any matrix inMg

A(G,c) satisfies the equalities for the RCON
model, soMg

A(G,c) ⊆Mud
(Gu,c). Conversely, given positive-definite Ψ ∈Mud

(Gu,c),

det(Ψ) = δ2
1

(
δ2 − 2|%|2δ−1

1

)
> 0 and hence δ2 − 2|%|2δ−1

1 > 0.

Setting d1 :=
√
δ1 ∈ R>0, d2 :=

√
δ2 − 2|%|2δ−1

1 ∈ R>0 and r := %/d1 ∈ K shows
that Ψ is of the form in Equation (10.2), i.e., Ψ ∈Mg

A(G,c). ♦
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Example 10.2.6 (RDAG 6= RCON, [MRS21, Example 3.2]). Consider the RDAG
model on 1 2 , the graph with two blue (circular) vertices and a red edge.
The colouring is compatible, so by Proposition 10.1.9 the RDAGmodel isMg

A(G,c),
where

A(G, c) =

{(
d r
0 d

) ∣∣∣∣ d ∈ K×, r ∈ K} .
The induced RCON model is given by 1 2 and consists of all Ψ ∈ PD2(K)
with Ψ11 = Ψ22 and Ψ12 = Ψ21, by Definition 10.2.4. Neither model is contained
in the other: the RCON model contains

Ψ′ :=

(
4 2
2 4

)
=

(
2 0

1
√

3

)(
2 1

0
√

3

)
,

but the diagonal entries 2 and
√

3 in the Cholesky decomposition do not satisfy the
condition a11 = a22 for a ∈ A(G, c). Therefore, Ψ′ /∈ Mg

A(G,c) by Lemma 10.1.11.
Conversely, the matrix

Ψ′′ :=

(
1 0
2 1

)(
1 2
0 1

)
=

(
1 2
2 5

)
is in the RDAG model, but not the RCON model, since Ψ

′′
11 6= Ψ

′′
22. ♦

To characterize when an RDAG model is equal to its corresponding RCON
model, we give two constructions of coloured graphs, one that is built from a
vertex of a coloured DAG (G, c) and the other from an edge.

Fix a vertex i ∈ I. Recall that ch(i) is the set of children of i. Consider
the subgraph on vertex set {i} ∪ ch(i) with edges i → k for each k ∈ ch(i), and
colours inherited from (G, c). We denote the coloured subgraph by Gi.

Now, fix an edge (j → i) in G. Consider the set {i}∪(ch(i) ∩ ch(j)) of vertices
with vertex colours inherited from (G, c). For each k ∈ ch(i)∩ch(j), we introduce
two edges i → k, one with colour c(ki) and the other with colour c(kj). We
denote this coloured multi-digraph by G(j→i). Note that G(j→i) only contains the
coloured vertex i if vertices i and j do not have common children.

Example 10.2.7 ([MRS21, Example 3.3]). Consider the coloured DAG8

5

1 2 3

4

The vertex construction at vertex 5 and edge construction at edge 5→ 4 are:

8with three vertex colours (blue/circular, black/square, and purple/triangular) and four edge
colours (red/solid, green/squiggly, orange/dashed, and brown/dotted)
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G5 =
5

1 2 3 4

G(5→4) = 1 2 3 4

♦

Two coloured graphs (G, c) and (G ′, c′) are isomorphic if the coloured graphs
are the same up to relabelling vertices. We denote an isomorphism by G ' G ′
when the colouring is clear. Now, we formulate the main theorem of this section.

Theorem 10.2.8 ([MRS21, Theorem 3.4]). Let (G, c) be a coloured DAG where
colouring c is compatible. The RDAG model M→

(G,c) on (G, c) is equal to the
RCON modelMud

(Gu,c) on (Gu, c) if and only if:

(a) G has no unshielded colliders;

(b) Gi ' Gj for every pair of vertices i, j of the same colour; and

(c) G(j→i) ' G(l→k) for every pair of edges j → i and l→ k in G of same colour.

Before we prove the theorem, we illustrate it in two examples.

Example 10.2.9 ([MRS21, Example 3.5]). Our running example 1 3 2
satisfies the conditions of Theorem 10.2.8: it has no unshielded colliders and the
graphs G1 and G2 both consist of a single blue vertex. Moreover, G(3→1) and
G(3→2) only consist of a blue vertex as 1 and 3 (respectively 2 and 3) do not have
common children. The RDAG and RCON models are therefore equal, as we saw
in Example 10.2.5. ♦

Example 10.2.10 ([MRS21, Example 3.6]). The coloured DAG (G, c) given by

9 10

1 2 3 4 5 6

7 8

also satisfies the conditions of Theorem 10.2.8:

(a) It has no unshielded colliders.

(b) For the black (square) vertices, the graphs Gi consist of one black vertex.
For the blue (circular) vertices, the Gi are isomorphic to

1 2 3 4
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The purple (triangular) vertices have Gi isomorphic to G5 from Exam-
ple 10.2.7.

(c) All edges j → i have ch(j)∩ ch(i) = ∅, except for the two brown edges. For
these, G(10→8) and G(9→7) are both isomorphic to G(5→4) from Example 10.2.7.

Hence, the RDAG modelM→
(G,c) equals the induced RCON modelMud

(Gu,c). Note
that the two connected components of (G, c) are not isomorphic as coloured di-
rected graphs. We will see why this is not required for the proof of Theorem 10.2.8,
i.e., why we can collapse vertices i and j in the definition of G(j→i). ♦

Finally, we prove Theorem 10.2.8 in a similar way as Theorem 10.2.1.

Proposition 10.2.11 ([MRS21, Proposition 3.8]). Let (G, c) be a coloured DAG
with compatible colouring c. ThenM→

(G,c) ⊆Mud
(Gu,c) if and only if conditions (a),

(b) and (c) of Theorem 10.2.8 hold.

Proof. We have M→
(G,c) = Mg

A(G,c) since the colouring is compatible, see Propo-
sition 10.1.9. Now, M→

(G,c) ⊆ Mud
(Gu,c) translates to: for all a ∈ A(G, c) it holds

that a†a lies in the RCON modelMud
(Gu,c). Recall that the Definition 10.2.4 of an

RCON model involves three conditions: a support condition (i), a vertex colour
condition (ii), and an edge colour condition (iii). We show that

condition 10.2.8(a) holds ⇔ ∀ a ∈ A(G, c) : a†a satisfies 10.2.4(i), (10.6)

and the analogous equivalences of (10.6) for 10.2.8(b) and 10.2.4(ii), as well as
for 10.2.8(c) and 10.2.4(iii). Altogether, we obtain the statement.

First, for the support condition (i), note that Proposition 10.2.2 says that

condition 10.2.8(a) holds ⇔ ∀ a ∈ A(G) : a†a satisfies 10.2.4(i),

where we stress that we have A(G) (instead of A(G, c)) on the right-hand side.
In particular, condition (a) implies that for all a ∈ A(G, c), a†a satisfies 10.2.4(i).
Conversely, assume condition (a) does not hold, i.e., G has an unshielded collider
i k j. Thus, Gu has no edge between i and j, so Ψij = Ψji = 0 for all
Ψ ∈ Mud

Gu . Let a ∈ A(G, c) be given by: all = 1 for all l ∈ [m]; aki = akj = 1;
apq = 1 whenever c(pq) = c(ki) or c(pq) = c(kj);9 and all other entries are zero.
Then

(a†a)ij =
m∑
l=1

alialj ≥ akiakj = 1 6= 0,

where we used alialj ∈ {0, 1} in the inequality. The above shows a†a does not
satisfy 10.2.4(i). Altogether, we proved (10.6).

Second, the vertex colour condition (ii) on a†a with a ∈ A(G, c), translates to

|aii|2 +
∑
k∈ch(i)

|aki|2 = |ajj|2 +
∑
l∈ch(j)

|alj|2 whenever c(i) = c(j), (10.7)

9In comparison with the proof of Proposition 10.2.2, this has to be added to ensure edge
colour symmetries, i.e., (10.1)(III).
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where we used (10.1)(I) to obtain (10.7). Consider vertices i and j with c(i) =
c(j). If condition (b) holds, then Gi ' Gjas coloured directed graphs. The
latter implies that (10.7) holds for all a ∈ A(G, c), by definition of Gi and Gj.
Conversely, assume (10.7) holds for all a ∈ A(G, c). The equation over K = C
implies the equation over K = R, so it suffices to assume the latter. Over R,
(10.7) is a polynomial identity in the entries of a ∈ A(G, c). Note that we have
aii = ajj as a ∈ A(G, c). Thus, the sums in (10.7) are equal for all a ∈ A(G, c)
only if | ch(i)| = | ch(j)| and the edge colours in Gi and Gj agree (counted with
multiplicity).10 By compatibility, the corresponding child vertex colours in Gi and
Gj also agree, hence we have Gi ' Gj. This proves (10.6) for (b) and (ii).

Third, the edge colour condition (iii) on a†a with a ∈ A(G, c), translates to

aiiaij +
m∑

p 6=i,j

apiapj = akkakl +
m∑

q 6=k,l

aqkaql whenever c(ij)=c(kl), (10.8)

where we used (10.1)(I) to get (10.8). Let j → i and l→ k be edges in G of same
colour.11 Now, if condition (c) holds, then G(j→i) ' G(l→k) as coloured multi-
digraphs. The latter implies that (10.8) holds for all a ∈ A(G, c), by definition
of G(j→i) and G(l→k). Conversely, assume (10.8) holds for all a ∈ A(G, c). Again,
it suffices to assume K = R. Then (10.8) is a polynomial identity in the entries
of a. Note that the compatibility of the colouring gives aii = akk, hence aiiaij =
akkakl, and that the other summands in (10.8) vanish unless p ∈ ch(i) ∩ ch(j),
respectively q ∈ ch(k) ∩ ch(l). Hence, the sums are equal for all a ∈ A(G, c) only
if | ch(i)∩ch(j)| = | ch(k)∩ch(l)| and the graphs G(j→i) and G(l→k) are isomorphic
on their edge colours. By compatibility, the corresponding child vertex colours
must also agree and hence G(j→i) ' G(l→k). This proves (10.6) for (c) and (iii).

Proposition 10.2.12 ([MRS21, Proposition 3.9]). Let (G, c) be a coloured DAG
with compatible colouring c such that conditions (a), (b) and (c) of Theorem 10.2.8
hold. ThenMud

(Gu,c) ⊆M→
(G,c).

Proof. We have M→
(G,c) = Mg

A(G,c) as colouring c is compatible, see Proposi-
tion 10.1.9. Given some Ψ ∈ Mud

(Gu,c), we show that its unique Cholesky decom-
position a := chol(Ψ) satisfies a ∈ A(G, c). Since G has no unshielded colliders
by condition (a), the proof of Proposition 10.2.3 shows a ∈ A(G). Therefore,
Equation (10.5) implies that for any vertex l and any edge i← j we have

al,l =
(

Ψl,l −
∑
p∈ch(l)

|ap,l|2
)1/2

(10.9)

ai,j =
(

Ψi,j −
∑

p∈ch(i)∩ch(j)

ap,iap,j

)
a−1
i,i . (10.10)

10Think of the entries of a as indeterminates.
11Note that in (10.8) the terms ajiajj and alkall do not appear, since the acyclicity ensures

i 6→ j and k 6→ l in G. In particular, it does not matter whether c(j) = c(l) holds or not. This
explains why the construction of G(j→i) does not take vertex j and its colour into account.
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We show that a satisfies the symmetries of the colouring. We prove this
inductively over the top left k×k blocks of a. If k = 1 there are no symmetries to
check. We assume that the top left k×k submatrix of a satisfies the symmetries.
For the induction step, we compare a1,k+1, a2,k+1, . . . , ak+1,k+1 with each other and
with ai,j, where i, j ∈ [k].

If there is an edge (k+1)→ 1 with same colour as j → i for i, j ∈ [k], we need
to show that a1,k+1 = ai,j. First, a11 = aii by compatibility. Second, Ψi,j = Ψ1,k+1

since i < j, 1 < k + 1 and Ψ ∈ Mud
(Gu,c), compare Definition 10.1.2(iii). Third,

all ap,q for p, q ∈ [k] respect the symmetries by induction hypothesis. Therefore,
G(j→i) ' G(k+1→1) as coloured multi-digraphs, condition (c), ensures that the sum
over the common children of i and j in (10.10) equals the respective sum over
the common children of 1 and k + 1 in (10.10). Altogether, we deduce that the
expressions (10.10) for ai,j and a1,k+1 are equal.

Proceeding inductively, we show analogously that all entries a2,k+1, . . . , ak,k+1

respect the symmetries of colouring c. Indeed, for ai′,k+1 with i′ ∈ {2, . . . , k} the
above argument still applies, even if we need to compare to ai,k+1 where i < i′.
This is due to the fact that (10.10) for ai′,k+1 and for ai,k+1 only involves entries
of a, which have already been proven to respect the symmetries among each other,
namely, ap,q with p, q ∈ [k] and a1,k+1, . . . , ai′−1,k+1.

Finally, if vertex k+1 has same colour as vertex l ∈ [k], we show ak+1,k+1 = al,l.
We have Gl ' Gk+1 by assumption (b) and Ψl,l = Ψk+1,k+1, since Ψ is in the RCON
model. Furthermore, we have shown that all ap,q, where p ∈ [k] and q ∈ [k + 1],
obey colouring c. Altogether, we conclude al,l = ak+1,k+1 using (10.9).

Proof of Theorem 10.2.8. If any of conditions (a), (b), and (c) do not hold, then
M→

(G,c) *Mud
(Gu,c), by Proposition 10.2.11, and hence the models cannot be equal.

If conditions (a), (b) and (c) hold, we have M→
(G,c) ⊆ Mud

(Gu,c) (by Proposi-
tion 10.2.11) andMud

(Gu,c) ⊆M→
(G,c) (by Proposition 10.2.12).

10.3 MLE: existence, uniqueness and an algorithm

In this section we characterize existence and uniqueness of MLEs in an RDAG
model via linear dependence conditions on certain augmented sample matrices,
see Theorem 10.3.6. This generalizes the characterization of ML estimation
in usual DAG models from Theorem 6.3.16. Furthermore, the proof of Theo-
rem 10.3.6 directly gives an algorithm to compute an MLE, if existent, in an
RDAG model. Finally we present illustrative examples.

First, we define the augmented sample matrices given a coloured DAG (G, c)
and sample matrix Y ∈ Km×n. Let αs be the number of vertices of colour
s ∈ c(I). Recall the set of parent relationship colours of vertex colour s from
Equation (10.3):

prc(s) = {c(ij) | there exists j → i in G with c(i) = s}, βs := | prc(s)|.

Definition 10.3.1 ([MRS21, Definition 4.1]). The augmented sample matrix of
sample matrix Y ∈ Km×n and vertex colour s, denotedMY,s, has size (βs+1)×αsn.
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We construct it row by row: let M (i)
Y,s denote the ith row of MY,s, where we index

from 0 to βs. Each row consists of αs blocks, each a row vector of length n. Let
i1 < i2 < . . . < iαs be the vertices of colour s. Then the top row of MY,s is

M
(0)
Y,s :=

(
Y (i1) Y (i2) . . . Y (iαs )

)
∈ K1×(αsn),

where Y (i) is the ith row of sample matrix Y . The other rows of MY,s are indexed
by the parent relationship colours t ∈ prc(s):

M
(t)
Y,s :=

 ∑
i1←j

c(i1j)=t

Y (j)
∑
i2←j

c(i2j)=t

Y (j) · · ·
∑
iαs←j

c(iαsj)=t

Y (j)

 .

For k ∈ [αs], the sum at the kth block of M (t)
Y,s is zero if there are no j → ik in

G of colour t. Note that we frequently use the following abuse of notation: t is
viewed as an edge colour like in c(i1j) = t, but also as its corresponding number
t ∈ [βs] like in M (t)

Y,s. N

Example 10.3.2 ([MRS21, Example 4.2]). For running example 1 3 2 ,

MY,◦ =

(
Y (1) Y (2)

Y (3) Y (3)

)
◦
→ ∈ K

2×2n and MY,� =
(
Y (3)

)
∈ K1×n (10.11)

are the two augmented sample matrices, one for each vertex colour. ♦

Example 10.3.3 ([MRS21, Example 4.3]). The coloured DAG

1

3 4 5 6 7

2

has MY,◦ =



Y (1) Y (2)

Y (3) 0

0 Y (3) + Y (5) + Y (6)

Y (5) Y (4)

Y (6) 0

Y (4) + Y (7) 0



◦

and MY,� =
(
Y (3) Y (4) Y (5) Y (6) Y (7)

)
�

as augmented sample matrices for vertex colour blue respectively black. ♦

The following two remarks are implicitly contained in [MRS21].

Remark 10.3.4 (MY,s recovers Y (i)∪pa(i) for usual DAGmodels). In Remark 10.1.10
we have seen that any DAG modelM→

G is an RDAG modelM→
(G,c), where colour-

ing c assigns each vertex and each edge its own distinct colour. Thus, setting
s := c(i) for vertex i ∈ [m], we have αs = 1 and M (0)

Y,s = Y (i). Moreover, as each
edge has its own colour, any parent of i can be uniquely identified with its parent
relationship colour. Therefore, | pa(i)| = βs := | prc(s)| and M (t)

Y,s = Y (j), where
j → i in G and c(ij) = t. Altogether, MY,s = Y (i)∪pa(i) for a vertex i of G. O
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Remark 10.3.5. Let (G, c) be a coloured DAG with compatible colouring. Left-
multiplication of a ∈ A(G) on Y ∈ Km×n is given by

(a · Y )(i) = aiiY
(i) +

∑
j∈pa(i)

aijY
(j)

for all vertices i ∈ [m]. The augmented sample matrices are constructed such
that the latter generalizes to A(G, c). Let a ∈ A(G, c) with vertex colour entries
ass ∈ K× and edge colour entries ast ∈ K, where s ∈ c(I) and t ∈ prc(s), compare
Lemma 10.1.8(ii). Then a · Y is determined by

M
(0)
a·Y,s = assM

(0)
Y,s +

∑
t∈prc(s)

astM
(t)
Y,s (10.12)

for all vertex colours s ∈ c(I). O

Now, we formulate the main theorem of this section. By Remark 10.3.4, it
generalizes Theorem 6.3.16 for DAG models to RDAG models.

Theorem 10.3.6 ([MRS21, Theorem 4.4]). Consider the RDAG model M→
(G,c)

on (G, c) where colouring c is compatible, and fix a sample matrix Y ∈ Km×n.
The following possibilities characterize maximum likelihood estimation given Y :

(a) `Y unbounded from above ⇔ ∃ s ∈ c(I) : M
(0)
Y,s ∈ span

{
M

(t)
Y,s : t ∈ [βs]

}
(b) MLE exists ⇔ ∀ s ∈ c(I) : M

(0)
Y,s /∈ span

{
M

(t)
Y,s : t ∈ [βs]

}
(c) MLE exists uniquely ⇔ ∀ s ∈ c(I) : MY,s has full row rank.

Example 10.3.7 ([MRS21, Example 4.5]). For running example 1 3 2 ,
Theorem 10.3.6 says that the MLE exists uniquely if Y (3) 6= 0 and

(
Y (1) Y (2)

)
is not parallel to

(
Y (3) Y (3)

)
. This holds almost surely as soon as we have one

sample, i.e., here mltu = 1, as we mentioned in Example 10.0.1. ♦

Example 10.3.8 ([MRS21, Example 4.6]). Returning to Example 10.3.3, the
MLE given Y exists provided MY,� =

(
Y (3) · · · Y (7)

)
6= 0, and

(
Y (1) Y (2)

)
is

not in the linear hull of the other rows of MY,◦. The MLE is unique if and only
if MY,◦ is full row rank, since this also implies MY,� 6= 0. ♦

The proof of Theorem 10.3.6 is analogous to the proof for uncoloured models
in Theorem 6.3.16. In particular, we use again Lemma 6.3.15. The following
proof also gives Algorithm 10.1 for computing an MLE, and a description of all
MLEs, see Corollary 10.3.9.

Proof of Theorem 10.3.6. By Proposition 10.1.9, we have M→
(G,c) = Mg

A(G,c) as
colouring c is compatible. In particular, for Ψ = (Im−Λ)†Ω−1(Im−Λ) ∈ M→

(G,c),
the matrix a = Ω−1/2(Im−Λ) giving the Cholesky decomposition Ψ = a†a is in
Mg

A(G,c), compare Lemma 10.1.11. As usual, let αs := |c−1(s)| and βs := | prc(s)|.
By Lemma 10.1.8(ii), we can write the entries of the matrices a, Ω and Λ as ass
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and ast, ωss and λst, where s ∈ c(I) and t ∈ [βs]. Using Equation (10.12) with
ass = ω

−1/2
ss and ast = −ω−1/2

ss λst, and that det(Im−Λ) = 1, we compute

−`Y (Ψ) = − log det(Ψ) + tr(ΨSY )
(8.3)
= log det(Ω) +

1

n
‖a · Y ‖2

= log

( ∏
s∈c(I)

ωαsss

)
+

1

n

∑
s∈c(I)

∥∥∥ω−1/2
ss

(
M

(0)
Y,s −

∑
t∈[βs]

λs,tM
(t)
Y,s

)∥∥∥2

=
∑
s∈c(I)

αs log(ωss) +
1

nωss

∥∥∥M (0)
Y,s −

∑
t∈[βs]

λs,tM
(t)
Y,s

∥∥∥2

.

An MLE is a minimizer of the above expression. Each parameter occurs in exactly
one of the summands over s ∈ c(I), because the set of edge colours is a disjoint
union of the prc(s), see Lemma 10.1.8(i). We therefore minimize each summand
separately, so fix s ∈ c(I). We can first determine λ̂s,t, t ∈ [βs] that minimize∥∥∥M (0)

Y,s −
∑
t∈[βs]

λs,tM
(t)
Y,s

∥∥∥2

, (10.13)

by Lemma 6.3.15(iii). Such λ̂s,t always exist: they are coefficients in the orthog-
onal projection PY,s of M

(0)
Y,s onto span

{
M

(t)
Y,s : t ∈ [βs]

}
, i.e.,

PY,s =
∑
t∈[βs]

λ̂s,tM
(t)
Y,s.

Furthermore, λ̂s,t, t ∈ [βs] are unique if and only if the vectors M (t)
Y,s, t ∈ [βs] are

linearly independent. Denote the minimum value of (10.13) by ζs. We will apply
Lemma 6.3.15 several times with γs := ζs/n.

If M (0)
Y,s ∈ span

{
M

(t)
Y,s : t ∈ [βs]

}
for some s ∈ c(i), then ζs = 0 and the

summand αs log(ωss) + ζs/(nωss) is not bounded from below for ωss > 0, by
Lemma 6.3.15(i). Hence, setting ωs′,s′ = 1 and λs′,t′ = 0 for all s′ ∈ c(I)\{s} and
all t′ ∈ [βs′ ] shows that `Y is not bounded from above. This proves “⇐” of (a).

If M (0)
Y,s /∈ span

{
M

(t)
Y,s : t ∈ [βs]

}
, equivalently ζs > 0, then the summand

αs log(ωss)+ζs/(nωss) has unique minimiser ω̂ss = ζs/(nαs), by Lemma 6.3.15(ii).
Hence, an MLE exists if ζs > 0 for all s ∈ c(I), which proves “⇐” in (b). As the
right-hand sides of (a) and (b) are opposites and since MLE existence implies `Y
is bounded from above, we have proved (a) and (b).

Since the ω̂ss are uniquely determined (if they exist), an MLE is unique if and
only if all λ̂s,t are unique. The latter is equivalent to: for all s ∈ c(I) the vectors
M

(t)
Y,s, t ∈ [βs] are linearly independent. In combination with the condition for

MLE existence from (b) we deduce (c).

The above proof of Theorem 10.3.6 gives Algorithm 10.1 and its correctness
for finding a MLE in an RDAG model with compatible colouring. The MLE is
given in a closed-form formula, as a collection of least squares estimators. It is
returned in terms of the matrices Λ and Ω.

The proof of Theorem 10.3.6 also gives a description of the set of MLEs.
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Algorithm 10.1: [MRS21, Algorithm 1]
MLE computation for an RDAG model with compatible colouring
Input : A coloured DAG (G, c) with compatible colouring c,

a sample matrix Y ∈ Km×n.
Output: An MLE given Y in the RDAG modelM→

(G,c), if one exists.
Otherwise, returns “MLE does not exist”.

for s ∈ c(I) do
αs := |c−1(s)|;
βs := | prc(s)|;
construct matrix MY,s ∈ K(βs+1)×αsn;
PY,s := orthogonal projection of M (0)

Y,s onto span
{
M

(t)
Y,s : t ∈ [βs]

}
;

if PY,s = M
(0)
Y,s then

return MLE does not exist ;
else

coefficients λs,t are such that PY,s =
∑

t∈prc(s) λs,tM
(t)
Y,s;

ωs,s := (αsn)−1
∥∥PY,s −M (0)

Y,s

∥∥2;
end

end
return MLE for Λ and Ω

Corollary 10.3.9 ([MRS21, Corollary 4.8]). Consider the RDAG model on (G, c)
where colouring c is compatible, with sample matrix Y ∈ Km×n. If (Λ,Ω) and
(Λ′,Ω′) are two MLEs, then Ω = Ω′ and

∀ s ∈ c(i) :
∑

t∈prc(s)

(λs,t − λ′s,t)M
(t)
Y,s = 0.

We end this section with two illustrative examples of RDAG models and the
theory presented herein. First, we apply our running example to model the effect
of a mother’s height on her two daughters’ heights.

Example 10.3.10 ([MRS21, Example 4.12]). Let K = R. The RDAG model on
the coloured DAG 1 3 2 is parametrized by λ ∈ R, ω, ω′ ∈ R>0 and
given by the linear structural equations

y1 = λy3 +ε1, y2 = λy3 +ε2, y3 = ε3, where ε1, ε2 ∼ N (0, ω), ε3 ∼ N (0, ω′).

Let variable y3 be the height (in cm) of a woman and let variables y1 and y2

be, respectively, the heights of her younger and older daughter. Vertices 1 and 2
both being blue indicates that, conditional on the mother’s height, the variance
of the daughter’s heights is the same. Both edges being red encodes that the
dependence of a daughter’s height on the mother’s height is the same for both
daughters.

We saw in Example 10.3.7 that the MLE exists almost surely given one sample.
We use Algorithm 10.1 to find the MLE, given one sample where the younger
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daughter’s height is 159.75cm, the older daughter’s height is 161.56, the mother’s
height is 155.32, and the population mean height is 163.83cm.12 Mean-centring
the data gives (

Y (1) Y (2) Y (3)
)

=
(
−4.08 −2.27 −8.51

)
.

The only black vertex is 3, and it has no parents, hence ω′ = ‖Y (3)‖2 = 72.42. The
orthogonal projection of

(
Y (1) Y (2)

)
onto the line spanned by

(
Y (3) Y (3)

)
has

coefficient λ = 0.37 and residual ω =
[
(−3.175 + 4.08)2 + (−3.175 + 2.27)2

]
/2 =

0.82. As we would expect, the regression coefficient λ is positive and the variance
of the daughters’ heights conditional on the mother’s height is lower than the
variance of the mother’s height. ♦

Now, we consider multiple measurements taken in each generation.

Example 10.3.11 ([MRS21, Example 4.13]). We consider measurements of the
snout length and head length of dogs. These are the first two of the seven
morphometric parameters in the study of clinical measurements of dog breeds
in [MMB+20]. We compare two RDAG models:

1 5 3

2 6 4

vs.
1 5 3

2 6 4

The black/square vertices 1 and 3 are the snout lengths of the two offspring.
Blue/circular vertices 2 and 4 are their head lengths. The purple/triangular
vertex 5 is the snout length of the parent and grey/pentagonal vertex 6 is the
head length of the parent. The edges encode the dependence of the offsprings’
traits on those of the parents.

Maximum likelihood estimation in the left hand model is two copies of Exam-
ple 10.3.10, one on the three odd variables, and one on the three even variables.
Thus, given one sample a unique MLE exists almost surely. For the right hand
model, Theorem 10.3.6 says that an MLE exists provided Y (5) 6= 0, Y (6) 6= 0 and
neither

(
Y (1) Y (3)

)
nor

(
Y (2) Y (4)

)
are in span

{(
Y (5) Y (5)

)
,
(
Y (6) Y (6)

)}
.

Hence an MLE exists almost surely with one sample. Moreover, the augmented
sample matrices MY,◦ and MY,� have full row rank almost surely provided n ≥ 2,
hence the MLE exists uniquely with two samples, by Theorem 10.3.6. ♦

10.4 Bounds on ML thresholds

In the previous section we gave a characterization of existence and unique exis-
tence of an MLE based on linear independence conditions, Theorem 10.3.6. Here

12We point out the difference to Remark 6.3.7. The latter discusses that the ML threshold
increases by one, if the mean is unknown and also part of an MLE. However, here we assume
the population mean to be known and use it to mean-venter the data. Hence, we only need to
find the concentration matrix.
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we use this theorem to give bounds on ML thresholds for RDAG models. These
bounds hold whenever the colouring is compatible and there are no edges between
vertices of the same colour.

We point out that, similarly to the DAG case, mltb(M→
(G,c)) = mlte(M→

(G,c))
holds by Theorem 10.3.6. However, in contrast to DAG models, we can have
mlte(M→

(G,c)) < mltu(M→
(G,c)) for an RDAGmodelM→

(G,c). In fact, Example 10.4.12
gives a family of RDAG models for which the gap becomes arbitrarily large.

The section is organized as follows. We start with some definitions. Then
we prove two lemmata and two propositions to deduce the main result, Theo-
rem 10.4.9. Afterwards, we discuss examples and end with a randomized method
to compute existence and uniqueness threshold.

Definition 10.4.1 ([MRS21, Definition 5.1]). Let MY be a matrix whose entries
are linear combinations of the entries of a matrix Y ∈ Km×n. The generic rank
of MY is its rank for generic Y . N

We often study the generic rank of MY by considering it as a symbolic matrix
whose entries are linear forms in the mn indeterminates Yij.

Example 10.4.2 ([MRS21, Example 5.2]). The coloured DAG13

1

3 4 5 6 7

2

has MY,◦ =


Y (1) Y (2)

Y (3) Y (3)

Y (4) Y (4)

Y (5) Y (5)

Y (6) Y (6)

Y (7) Y (7)


◦

When n = 1, the matrix MY,◦ has generic rank two. Removing its top row gives
a 5× 2 matrix of generic rank one. ♦

Let (G, c) be a coloured DAG. For s ∈ c(I), let αs be the number of vertices
of colour s and βs the number of parent relationship colours of s.

Definition 10.4.3. Fix a vertex colour s ∈ c(I). For sample matrix Y ∈ Km×n

let MY,s ∈ K(βs+1)×αsn be as in Definition 10.3.1. We define the following.

1. M ′
Y,s ∈ Kβs×αsn is the submatrix of MY,s obtained from removing the top

row M
(0)
Y,s. In other words, the rows of M ′

Y,s are M
(1)
Y,s,M

(2)
Y,s, . . . ,M

(βs)
Y,s .

2. rs is the generic rank of M ′
Y,s when n = 1.

3. mlte
(
M→

(G,c), s
)
is the smallest n such thatM (0)

Y,s /∈
{
M

(t)
Y,s | t ∈ prc(s)

}
holds

for almost all Y ∈ Km×n.

4. mltu
(
M→

(G,c), s
)
is the smallest n such that MY,s has full row rank βs + 1

for almost all Y ∈ Km×n. N
13with two vertex colours (blue/circular and black/square) and five edge colours (red/solid,

orange/dashed, green/squiggly, purple/zigzag, and brown/dotted)
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In the following we prove bounds on the ML thresholds of an RDAG model
M→

(G,c). We proceed as follows. By Theorem 10.3.6, it suffices to give bounds on
mlte

(
M→

(G,c), s
)
and mltu

(
M→

(G,c), s
)
for all s ∈ c(I). Such bounds are given in

Propositions 10.4.8 and 10.4.7 in terms of αs, βs and rs. To obtain these bounds,
we show the following two lemmata which study the generic rank of M ′

Y,s as the
sample size n grows.

Lemma 10.4.4 ([MRS21, Lemma 5.8]). Consider the RDAG model on (G, c)
where colouring c is compatible, and fix a vertex colour s. For n ≥ βs and generic
Y ∈ Km×n the row vectors M (1)

Y,s, . . . ,M
(βs)
Y,s are linearly independent.

Proof. We think of the mn entries of Y as indeterminates and construct an in-
vertible βs × βs submatrix of M ′

Y,s ∈ Kβs×αsn. We illustrate this construction in
Example 10.4.5 below.

Let i1 < i2 < . . . < iαs be the vertices of colour s. The matrix M ′
Y,s has αs

many blocks of size βs × n. For each parent relationship colour pt, t ∈ [βs] there
is some vertex ik = ik(t) (where k ∈ [αs]) such that there is an edge of colour pt
pointing towards vertex ik = ik(t). That is, the kth block of M ′

Y,s has non-zero
entries in the tth row. Let Ct ∈ Kβs×1 be the tth column of that block, which
exists as n ≥ βs. By construction, the tth entry of Ct is non-zero. We show that
the matrix C =

(
C1 C2 . . . Cβs

)
, is invertible.

An entry of C is either a sum of variables or it is zero. By construction, column
Ct only contains (sums of) elements of the tth column of Y . The same variable
Yj,t cannot occur in two different entries of Ct, because there is at most one edge
from j to vertex ik(t). Altogether, the entries of C are (possible empty) sums of
variables and each variable occurs in at most one entry of C. Thus, and since the
determinant is an alternating sum over products of permutations, it is enough to
show that one product is non-zero. By construction, C11C22 · · ·Cβsβs 6= 0. Thus,
M ′

Y,s has generic rank βs for n ≥ βs.

Example 10.4.5. We illustrate the construction of C and its underlying combi-
natorial idea from the proof of Lemma 10.4.4. Consider the coloured DAG from
Example 10.3.3, i.e.,

1

3 4 5 6 7

2

with M ′Y,◦ =


Y (3) 0

0 Y (3) + Y (5) + Y (6)

Y (5) Y (4)

Y (6) 0

Y (4) + Y (7) 0



Considering vertex colour blue, we have α◦ = 2 and β◦ = 5. Let n ≥ β◦ = 5 and
take Y ∈ K7×n. The parent relationship colours (prc) are ordered as indicated by
M ′

Y,◦, i.e., red, orange, green, purple and finally brown. Arrows of colour red only
point towards vertex 1. Thus, we have to choose the first column (red is first prc)
from the first block (i.e., the block for vertex 1) ofM ′

Y,◦. This determines the first
column of C. Similarly, we have to choose the second column from the second



224 Chapter 10. Restricted DAG Models

block for colour orange, and the fourth and fifth column from the first block for
colours purple and brown. Only for the third colour green, we can choose both
the first and the second block. We take the first block. Altogether, we obtain

C =


Y3,1 0 Y3,3 Y3,4 Y3,5

0 Y3,2 + Y5,2 + Y6,2 0 0 0
Y5,1 Y4,2 Y5,3 Y5,4 Y5,5

Y6,1 0 Y6,3 Y6,4 Y6,5

Y4,1 + Y7,1 0 Y4,3 + Y7,3 Y4,4 + Y7,4 Y4,5 + Y7,5


and

∏5
i=1Cii = Y3,1(Y3,2 + Y5,2 + Y6,2)Y5,3Y6,4(Y4,5 + Y7,5). The matrix C is indeed

invertible for generic Y . ♦

The next lemma and its proof are contained (in condensed form) in [MRS21]
in the proof of Proposition 5.9.

Lemma 10.4.6. Let (G, c) be a coloured DAG with compatible colouring c. For
generic Y ∈ Km×n the rank of M ′

Y,s is at least min{rs + n− 1, βs}.

Proof. Note that by construction of MY,s (respectively M ′
Y,s)

X {1,n} :=
{
M ′

Y,s | Y ∈ Km×n}
is a linear subspace of Kβs×αsn. The generic rank of M ′

Y,s ∈ Kβs×αsn, denoted
rs(n), is given by rs(n) = max{rank(X) | X ∈ X {1,n}}. Note that rs = rs(1), by
Definition 10.4.3. The space X {1,n} is the so-called (1, n) blow up14 of X := X {1,1}.
In view of the generic matrixM ′

Y,s ∈ Kβs×αs the (1, n) matrix blow up means that
the scalar variables Y (i) are replaced by generic row vectors of length n, to give a
βs×αsn matrix. As suggested by the notation, this setting fits [DM17, Section 2].
By [DM17, Lemma 2.7 parts (1) and (3)], we have for all n that

rs(n) ≤ rs(n+ 1) and rs(n+ 1) ≥ 1

2

(
rs(n) + rs(n+ 2)

)
, (10.14)

i.e., rs(n) is weakly increasing and weakly concave. Moreover, the maximum rank
among the rs(n) is βs, which occurs for n ≥ βs by Lemma 10.4.4. Now, let n
be such that rs(n) < βs and rs(n) = rs(n + 1). Then, by the left inequality in
(10.14), there exists some integer 2 ≤ k ≤ βs − n with

rs(n) = rs(n+ 1) = · · · = rs(n+ k − 1) < rs(n+ k),

but this contradicts rs(n+k−1) ≥ 1
2

(
rs(n+k−2)+rs(n+k)

)
, the right inequality

of (10.14). Therefore, rs(n) < βs implies rs(n) + 1 ≤ rs(n + 1). We conclude by
induction on n that rs(n) ≥ min(rs + n− 1, βs) for all n.

Equipped with the previous lemmata we prove bounds on mlte
(
M→

(G,c), s
)
and

mltu
(
M→

(G,c), s
)
.

14This is not related to the blow up construction from Algebraic Geometry, e.g., to resolve
singularities.
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Proposition 10.4.7 ([MRS21, Proposition 5.10]). Let (G, c) be a coloured DAG
that has no edges between any vertices of colour s, and c is compatible. Then⌊

βs
αs

⌋
+ 1 ≤ mltu

(
M→

(G,c), s
)
≤ βs + 2− rs.

Moreover, if rs 6= βs + 1− (βs/αs) then mltu
(
M→

(G,c), s
)
≤ βs + 1− rs.

Proof. To prove the lower bound, we observe that if αsn ≤ βs, then the βs + 1
rows of MY,s will be linearly dependent. Hence, we need at least n > βs/αs many
samples for MY,s to have generically full row rank.

To prove the upper bound, let M ′
Y,s and rs be as in Definition 10.4.3. By

Lemma 10.4.6, for n samples we have rank(M ′
Y,s) ≥ min(rs+n−1, βs) generically.

Thus, for n = βs + 1 − rs the matrix M ′
Y,s generically has full row rank βs. It

remains to consider the top row of MY,s. We must have βs ≤ αsn, otherwise the
βs × αsn matrix M ′

Y,s could not have full row rank. We look separately at the
possible cases: βs < nαs and βs = nαs. If βs < nαs, the row vectorM (0)

Y,s ∈ K1×αsn

is generically not in the span of the βs rows of M ′
Y,s, because there are no edges

between vertices of colour s. Thus, MY,s generically has full row rank βs + 1, and
mltu(M→

(G,c), s) ≤ n = βs+1−rs. If βs = nαs, equivalently if rs = βs+1−(βs/αs),
an additional sample ensures rank(MY,s) = βs + 1 generically.

Proposition 10.4.8 ([MRS21, Proposition 5.9]). Let (G, c) be a coloured DAG
that has no edges between any vertices of colour s, and c is compatible. If αs = 1,
then mlte

(
M→

(G,c), s
)

= mltu
(
M→

(G,c), s
)

= βs + 1, while if αs ≥ 2 we have⌊
rs − 1

αs − 1

⌋
+ 1 ≤ mlte

(
M→

(G,c), s
)
≤
⌊
βs
αs

⌋
+ 1.

Proof. If αs = 1, then M
(0)
Y,s = Y (i) where i is the unique vertex of colour s.

Moreover, each rowM
(t)
Y,s, t ∈ [βs] is non-zero and a sum of certain Y (j), j ∈ pa(i).

Note that Y (i) only appears inM (0)
Y,s and each parent row of Y (i) appears in exactly

one row M
(t)
Y,s, t ∈ [βs]. Similarly to the uncoloured case, the M (t)

Y,s, t ∈ [βs] span
K1×n generically if n ≤ βs; and MY,s has generically full row rank if n ≥ βs + 1.
Altogether, mlte

(
M→

(G,c), s
)

= mltu
(
M→

(G,c), s
)

= βs + 1 if αs = 1.
It remains to consider αs ≥ 2. To prove the upper bound, we show that if

n > βs/αs, then the top row of MY,s is generically not in the span of the other
rows. Since there are no edges between two vertices of colour s, the nαs entries
of the top row M

(0)
Y,s are all independent, from each other and from the entries of

the other rows. If βs < αsn, the other βs rows do not span Knαs , so a generic
choice of top row will not lie in their span.

For the lower bound, the generic rank of M ′
Y,s at least min{rs +n− 1, βs}, by

Lemma 10.4.6. Thus, the top row M
(0)
Y,s is in the span of the other rows whenever

min(rs +n−1, βs) ≥ nαs. The latter holds in particular, if αsn ≤ rs +n−1 ≤ βs
holds, i.e.,

n ≤ min

(⌊
rs − 1

αs − 1

⌋
, βs + 1− rs

)
.
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Hence, we need at least one more sample to guarantee thatM (0)
Y,s is not in the row

span of M ′
Y,s, i.e.,

mlte
(
M→

(G,c), s
)
≥ min

(⌊
rs − 1

αs − 1

⌋
+ 1, βs + 2− rs

)
.

The minimum must be attained by the former expression, because

mlte
(
M→

(G,c), s
)
≤ mltu

(
M→

(G,c), s
)
≤ βs + 2− rs

holds by Proposition 10.4.7.

As a consequence of Theorem 10.3.6 parts (b) and (c) we have

mlte
(
M→

(G,c)
)

= max
s∈c(I)

mlte
(
M→

(G,c), s
)
, mltu

(
M→

(G,c)
)

= max
s∈c(I)

mltu
(
M→

(G,c), s
)
.

Taking the maximum of the lower and upper bounds in Propositions 10.4.8
and 10.4.7, over all vertex colours, gives the main theorem of this section.

Theorem 10.4.9 ([MRS21, Theorem 5.3]). Consider the RDAG model M→
(G,c)

on (G, c) where colouring c is compatible, and (G, c) has no edges between vertices
of the same colour. For vertex colour s, set l(s) := (rs − 1)(αs − 1)−1 if αs ≥ 2
and l(s) := βs if αs = 1. We have the following bounds on ML thresholds:

max
s∈c(I)

bl(s)c+ 1 ≤ mlte
(
M→

(G,c)
)
≤ max

s∈c(I)

⌊
βs
αs

⌋
+ 1, (10.15)

max
s∈c(I)

⌊
βs
αs

⌋
+ 1 ≤ mltu

(
M→

(G,c)
)
≤ max

s∈c(I)
(βs + 2− rs) . (10.16)

It remains an open problem to turn these bounds into formulae.

Problem 10.4.10 ([MRS21, Problem 5.4]). Determine the maximum likelihood
thresholds of an RDAG model M→

(G,c), as formulae involving properties of the
DAG G and its colouring c.

Remark 10.4.11. We point out the following regarding Theorem 10.4.9.

(i) Recall from Remark 10.1.10 that any DAG modelM→
G is an RDAG model

M→
(G,c) with compatible colouring. In this situation, αs = 1 for all s ∈ c(I)

and βs = | pa(i)|, where i is the unique vertex with c(i) = s. Therefore,
Theorem 10.4.9 contains Corollary 6.3.19 as a special case.

(ii) The upper bounds for existence threshold and uniqueness threshold are
both at most maxs βs + 1.15 Hence, the RDAG thresholds are always at
least as small as the DAG threshold, by part(i).

15If G does not have any edges, i.e., βs = rs = 0 for all s ∈ c(I), then the uniqueness threshold
trivially equals one as then each row vector MY,s ∈ K1×αsn has generic rank one.
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(iii) Theorem 10.4.9 applies to all RDAG models with compatible colouring that
are equal to its induced RCONmodel, because such models never have edges
between vertices of the same colour, as follows. Take the minimal vertex i
such that i ← j in G and c(i) = c(j). Then no children of i have colour
c(i), therefore Gi 6= Gj, a contradiction to Theorem 10.2.8(b).16 O

We illustrate the threshold bounds in some examples. The first example shows
that the existence threshold and uniqueness threshold for an RDAG model can
have arbitrarily large distance.

Example 10.4.12 ([MRS21, Example 5.5]). We find the existence and unique-
ness threshold for the RDAG model on the coloured DAG (G, c) from Exam-
ple 10.4.2. Since the black (square) vertices have no parents, the matrix MY,�

has full rank as soon as n ≥ 1. Therefore, the thresholds are determined by vertex
colour blue. The generic rank of M ′

Y,◦ is one when n = 1, i.e., r◦ = 1. Using
α◦ = 2 and β◦ = 5, Theorem 10.4.9 and Proposition 10.4.7 give bounds

r◦ − 1

α◦ − 1
+ 1 = 1 ≤ mlte(M→

(G,c)) and mltu(M→
(G,c)) ≤ β◦ + 1− r◦ = 5.

In fact, both bounds are attained as follows. For all n ≥ 1, the row M
(0)
Y,◦ =

(Y (1), Y (2)) is almost surely not contained in the span of the other rows of MY,◦,
hence mlte(M→

(G,c)) = 1. Moreover, we need n ≥ 5 samples for generic linear
independence of the rows (Y (3), Y (3)), . . . , (Y (7), Y (7)). Thus, mltu(M→

(G,c)) = 5.
This example extends to an arbitrary number of vertices, i.e., to the coloured

DAG with k + 2 vertices, 2 blue/circular and k black/square, and 2k edges of k
colours (arranged as in the k = 5 case above). Repeating the above argument
gives mlte(M→

(G,c)) = 1 and mltu(M→
(G,c)) = k. ♦

We modify the edges from Examples 10.4.2 and 10.4.12 to see how the thresh-
olds change.

Example 10.4.13 ([MRS21, Example 5.7]). Consider the following coloured
DAGs, both with compatible colouring

1

3 4 5 6 7

2

1

3 4 5 6 7

2

Since the black vertices do not have parents, the thresholds are determined by

16This is [MRS21, Remark 5.6].
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the blue vertices. Given sample matrix Y ∈ K7×n, we respectively obtain

MY,◦ =


Y (1) Y (2)

Y (3) 0
Y (4) 0
Y (5) 0
Y (6) 0
Y (7) Y (4)


◦

MY,◦ =


Y (1) Y (2)

Y (3) 0
0 Y (3) + Y (5) + Y (6)

Y (5) Y (4)

Y (6) 0
Y (4) + Y (7) 0


◦

In both cases we have α◦ = 2, β◦ = 5, and r◦ = 2. Thus, Theorem 10.4.9 gives in
both cases

2 =

⌊
r◦ − 1

α◦ − 1

⌋
+ 1 ≤mlte ≤

⌊
β◦
α◦

⌋
+ 1 = 3

3 =

⌊
β◦
α◦

⌋
+ 1 ≤mltu ≤ β◦ + 2− r◦ = 5.

Actually, Proposition 10.4.7 yields mltu ≤ 4, since r◦ 6= β◦ + 1− (β◦/α◦). In the
following we determine the precise values of the thresholds.

First, we study the left-hand RDAG. When n = 2 the row Y (2) ∈ K1×2 is
generically not in the span of Y (4), hence M (0)

Y,◦ = (Y (1), Y (2)) is not in the linear
span of the other five rows of MY,◦, so mlte = 2. For n ≥ 2, the submatrix(

Y (2)

Y (4)

)
∈ K2×n

has generic rank two. Therefore, MY,◦ ∈ K6×2n has generic rank at most five if
n = 3. However, n = 4 suffices for MY,◦ to have full row rank 6 generically. We
conclude mltu = 4 for the left-hand RDAG.

Next, we study the right-hand RDAG. For n = 2, M (0)
Y,◦ = (Y (1), Y (2)) is

generically contained in the linear span of the other rows of MY,◦. Together with
mlte ≤ 3 we conclude that mlte = 3. For uniqueness, when n = 3 the submatrices Y (3)

Y (6)

Y (4) + Y (7)

 ,

 Y (2)

Y (3) + Y (5) + Y (6)

Y (4)

 ∈ K3×3

of MY,◦ generically have rank three, and the zero pattern ensures that MY,◦ has
full row rank six generically. Combining this with 3 ≤ mltu gives mltu = 3. ♦

We end this section with the following proposition.

Proposition 10.4.14 ([MRS21, Proposition 5.11]). For an RDAG modelM→
(G,c),

where colouring c is compatible, there is a randomized, polynomial time algorithm
for computing the thresholds mlte

(
M→

(G,c)
)
and mltu

(
M→

(G,c)
)
.

Proof. Remember that mlte
(
M→

(G,c)
)

= maxs∈c(I) mlte(M→
(G,c), s) and we have the

same equality for mltu. As |c(I)| ≤ m is part of the data, i.e., the coloured DAG
(G, c), it suffices to give a randomized polynomial time algorithm to compute
mlte(M→

(G,c), s) and mltu(M→
(G,c), s) for a fixed vertex colour s.
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The rank of a symbolic matrix can be computed in polynomial time by a
randomized algorithm, see e.g., [Lov79; Sch80]. Hence, thinking of the entries
of Y ∈ Km×n as indeterminates, we can compute for any n ≥ 1 the rank of the
symbolic (βs + 1)×αsn matrix MY,s as well as the rank of the symbolic βs×αsn
matrix M ′

Y,s. We obtain mlte(M→
(G,c), s) as the smallest n such that rank(MY,s) >

rank(M ′
Y,s) and mltu(M→

(G,c), s) as the smallest n such that rank(MY,s) = βs + 1.
The algorithm terminates and has polynomial time by the upper bound of βs + 1
for both mlte(M→

(G,c), s) and mltu(M→
(G,c), s), i.e., n ≤ βs + 1 suffices.

10.5 Simulations

This section is [MRS21, Section 6]. The simulations, their Python implementation
and the analysis were completely done by Anna Seigal.

In the previous section, we gave upper and lower bounds for the maximum
likelihood thresholds for RDAGmodels, see Theorem 10.4.9. The bounds quantify
how the graph colouring serves to decrease the number of samples needed for
existence and uniqueness of the MLE. In this section, we assume that the number
of samples is above the maximum likelihood threshold. We explore via simulations
the distance of an MLE to the true model parameters. We compare the RDAG
model estimate from Algorithm 10.1 to the usual (uncoloured) DAG model MLE.

The details of our simulations are as follows. We used the NetworkX Python
package [HSS08a] to build an RDAG model via the following steps. We first build
a DAG by generating an undirected graph according to an Erdős–Rényi model
that includes each edge with fixed probability, and then directing the edges so
that j → i implies j > i. We assign edge colours randomly, after fixing the total
number of possible edge colours. We choose the unique vertex colouring with
the largest number of vertex colours that satisfies the compatibility assumption
from Definition 10.1.6. We sample edge weights λst from a uniform distribution
on [−1,−0.25]∪ [0.25, 1] and we sample noise variances ωss uniformly from [0, 1].
Our code is available at https://github.com/seigal/rdag.

The results of the simulations are presented as violin plots using the Python
package seaborn [Was21]. The following information is taken from https://
seaborn.pydata.org/tutorial/categorical.html#categorical-tutorial.
The violin plot shows the data range and the (smoothed) probability density of
the observed data, which gives the characteristic “violin shape”, compare Fig-
ure 10.1. Moreover, the black rectangle inside a “violin” indicates the quartiles
of the distribution: the rectangle itself presents the interquartile range (IQR,
middle 50%) while the white point inside the black rectangle presents the median
(i.e., the second quartile). The “whiskers” indicate points that lie within 1.5 IQRs
of the first and third quartile.

Now, we describe our three simulations and interpret the outcome. First,
the RDAG MLE is generally closer to the true model parameters than the DAG
MLE, see Figure 10.1. As we would expect, both estimates get closer to the true
parameters as the number of samples from the distribution increases. At a high

https://github.com/seigal/rdag
https://seaborn.pydata.org/tutorial/categorical.html#categorical-tutorial
https://seaborn.pydata.org/tutorial/categorical.html#categorical-tutorial
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Figure 10.1: [MRS21, Figure 1] We generated RDAGs on 10 vertices, with each
edge present with probability 0.5 and 5 edge colours. We sampled from the
distribution n ∈ {5, 10, 100, 1000, 10000} times. For each n we generated 50
random graphs and computed the RDAG MLE and the DAG MLE, comparing
them to the true parameter values on a log scale. The results are displayed in a
violin plot, with blue for the RDAG MLE and orange for the DAG MLE.

Figure 10.2: Figure 2 in new version of [MRS21]. We generated RDAGs on 20
vertices, each edge present with probability 0.5 and number of edge colours in
{2, 5, 10, 50, 100}. We sampled from the distribution 100 times and compared the
MLE to the true parameter values on a log scale. The DAG MLE is shown in
orange for comparison.
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number of samples, the difference between the RDAG MLE and the DAG MLE
is smaller than at a low number of samples.

Second, we examined how the RDAG MLE was affected by the number of
edge colours, see Figure 10.2. The RDAG MLE is closest to the true parameters
when the number of edge colours is small; i.e., when there are fewer parameters
to learn. As the number of edge colours increases, the difference between the
RDAG MLE and the DAG MLE decreases. Note that the DAG model is the
setting where each vertex and edge has its own colour.

Third, we looked at how the RDAG MLE and DAG MLE are affected by
the edge density of the graph, see Figure 10.3. The RDAG MLEs get closer to
the true parameter values as the edge density increases: more edges have the
same weight, so more samples contribute to estimating each edge weight. By
comparison, the DAG MLEs get further away from the true parameters as the
edge density increases, because there are more parameters to learn.

Figure 10.3: [MRS21, Figure 3] We generated RDAGs on 10 vertices, each edge
present with probability in {0.1, 0.3, 0.5, 0.7, 0.9} and 5 edge colours. For each
edge probability we generated 50 random graphs, sampled from each one 100
times, and compared the RDAG and DAG MLEs. As above, blue is the RDAG
MLE and orange is the DAG MLE.

10.6 Connections to Stability Notions

This section characterizes ML estimation for RDAG models via stability notions
under sets A ⊆ GLm(K), see Definition 8.2.1. We proceed similar to the study
of TDAG models in Section 9.5. It is remarkable that the full correspondence
extends to RDAG models M→

(G,c) with compatible colouring c, Theorem 10.6.4.
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We prove this by showing that the linear independence conditions from Theo-
rem 10.3.6 are equivalent to stability notions for the sample matrix, see Theo-
rem 10.6.3. Furthermore, we study the set of MLEs in Proposition 10.6.6, which
offers an alternative characterization to Corollary 10.3.9. We start with the weak
correspondence for RDAG models.
Remark 10.6.1 (Weak Correspondence for RDAGmodels, [MRS21, Remark A.5]).
LetM→

(G,c) be an RDAG model with compatible colouring c, soM→
(G,c) =Mg

A(G,c)
by Proposition 10.1.9. The set A(G, c) ⊆ GLm(K) is closed under non-zero scalar
multiples. Therefore, the weak correspondence, Theorem 8.2.3, holds for the
RDAG modelMg

A(G,c). Moreover, we can always apply the weak correspondence
using A(G, c)SL (instead of A(G, c)±SL). Indeed, if K = R and αs is even for
all s ∈ c(I), then A(G, c) only contains matrices of positive determinant, so
A(G, c)SL = A(G, c)±SL. On the other hand, if K = R and αs is odd for some
vertex colour s, then A(G, c) contains the diagonal, orthogonal matrix t defined
by ts,s := −1 and ts′,s′ := 1 for s′ ∈ c(I)\{s}. We have ta ∈ A(G, c) for all
a ∈ A(G, c), by Lemma 10.1.8(iii). Therefore, condition (ii) in Theorem 8.2.3 is
satisfied: choose o(a) = Im if det(a) > 0 and otherwise choose o(a) = t. O

Next, we link the linear independence conditions from Theorem 10.3.6 to
stability notions under A(G, c)SL. First, we prove a condition for polystability.

Lemma 10.6.2 ([MRS21, Lemma A.6]). Consider the RDAG model on (G, c)
where colouring c is compatible, and set A := A(G, c)SL. Let Y ∈ Km×n be such
that M (0)

Y,s /∈ span
{
M

(1)
Y,s, . . . ,M

(βs)
Y,s

}
for all s ∈ c(I). Then Y is polystable under

A and A · Y is Zariski closed.

Proof. Note that the assumption on Y implies that Y 6= 0. To study the orbit
A·Y , let T be the set of diagonal matrices inA and U the set of unipotent matrices
in A. We have A = T ·U and actually any a ∈ A admits a unique decomposition
a = t(a)u(a), where t(a) ∈ T and u(a) ∈ U , compare Lemma 10.1.8(iv). For
s ∈ c(I), recall the construction of MY,s ∈ K(βs+1)×αsn from Definition 10.3.1.
Setting Vs := K1×αsn we can identify Km×n ∼=

⊕
s Vs such that the rows of vertex

colour s belong to Vs. By Equation (10.12), the set U · Y is H :=
∏

sHs with

Hs =
{
M

(0)
Y,s + as,1M

(1)
Y,s + . . .+ as,βsM

(βs)
Y,s | as,t ∈ K

}
.

The affine space Hs equalsM
(0)
Y,s +Xs, where Xs := span

{
M

(1)
Y,s, . . . ,M

(βs)
Y,s

}
. Since

by assumption M (0)
Y,s /∈ Xs for all s ∈ c(I), we have Ks :=

(
KM (0)

Y,s

)
⊕Xs ⊆ Vs and

Hs has at least codimension one in Vs. Since T acts on each Vs with the non-zero
scalar for vertex colour s, we have

A · Y = T · (U · Y ) = T ·H = T ·
∏
s

Hs ⊆
⊕
s

Ks ⊆
⊕
s

Vs.

It suffices to show that A · Y is Zariski-closed in
⊕

sKs. Each Hs is an affine
subspace of Ks with codimension one, by definition of Ks. Therefore, there exists
a linear form ps ∈ K∗s such that

Hs = VKs(ps − 1),
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where V(·) denotes the vanishing locus.
We finish the proof by showing that A · Y = V

(∏
s p

αs
s − 1

)
in
⊕

sKs. First,
given W = (Ws)s ∈ A · Y = T · H we can write W = t · Z with t ∈ T and
Z = (Zs)s ∈ H. Then(∏

s

pαss

)
(W ) =

∏
s

ps(Ws)
αs =

∏
s

(
tssps(Zs)

)αs
=
∏
s

(tss)
αs = 1

by the choice of ps ∈ K∗s and since det(t) =
∏

s t
αs
ss = 1. On the other hand,

suppose W = (Ws)s ∈ V
(∏

s p
αs
s − 1

)
⊆
⊕

sKs. Set tss := ps(Ws), then we have∏
s t
αs
ss = 1, so the tss define some t ∈ T . Moreover, t−1

ss Ws ∈ Hs by definition of
tss, so W ′ := (t−1

ss Ws)s ∈ H. Hence, W = t ·W ′ is contained in T ·H = A·Y .

The upcoming theorem links stability notions under A(G, c)SL to linear inde-
pendence conditions. It generalizes Theorem 9.5.8 for TDAG models, compare
Remark 10.3.4.

Theorem 10.6.3 ([MRS21, Proposition A.7]). Consider an RDAG model on
(G, c) with compatible colouring c and sample matrix Y ∈ Km×n. Stability under
A(G, c)SL relates to linear independence conditions on the matrices MY,s:

(a) Y unstable ⇔ ∃ s ∈ c(I) : M
(0)
Y,s ∈ span

{
M

(t)
Y,s : t ∈ [βs]

}
(b) Y polystable ⇔ ∀ s ∈ c(I) : M

(0)
Y,s /∈ span

{
M

(t)
Y,s : t ∈ [βs]

}
(c) Y stable ⇔ ∀ s ∈ c(I) : MY,s has full row rank.

In particular, Y is semistable if and only if it is polystable.

Proof. The RDAG modelM→
(G,c) equalsM

g

A(G,c) by compatibility. Recall that the
weak correspondence, Theorem 8.2.3, holds for Mg

A(G,c) using A := A(G, c)SL,
compare Remark 10.6.1. Therefore, part (a) and the forwards direction of (b)
follows in combination with Theorem 10.3.6, while Lemma 10.6.2 gives the back-
wards direction of (b).

For part (c), it suffices to see that a polystable Y has a trivial stabilizing set
AY if and only if for all s ∈ c(I) the rowsM (1)

Y,s, . . . ,M
(βs)
Y,s are linearly independent.

So let Y be polystable. By Equation (10.12), a matrix a ∈ A satisfies aY = Y if
and only if for all s ∈ c(I)

as,sM
(0)
Y,s +

∑
t∈[βs]

as,tM
(t)
Y,s = M

(0)
Y,s . (10.17)

We have M (0)
Y,s /∈ span

{
M

(i)
Y,s : i ∈ [βs]

}
for all s ∈ c(I), by part (b) and Y being

polystable. Therefore, Equation (10.17) implies as,s = 1 and
∑

t∈[βs]
as,tM

(t)
Y,s = 0.

If M (1)
Y,s, . . . ,M

(βs)
Y,s are linearly independent, then (10.17) has exactly one solu-

tion, namely as,s = 1 and as,t = 0 for all t ∈ [βs]. Thus, if M
(1)
Y,s, . . . ,M

(βs)
Y,s are lin-

early independent for all s ∈ c(I), thenAY = {Im}. On the other hand, if for some
s ∈ c(I) the rowsM (1)

Y,s, . . . ,M
(βs)
Y,s are linearly dependent, then

∑
t∈[βs]

as,tM
(t)
Y,s = 0

has infinitely many solutions. Distinct solutions give distinct unipotent matrices
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u ∈ A by setting us,t := as,t for t ∈ prc(s), and us′,t′ := 0 for s′ ∈ c(I)\{s},
t′ ∈ prc(s′). By (10.12), such a unipotent matrix u ∈ A satisfies uY = Y , since
the sets prc(s) are disjoint, so the us,t do not affect any rows of Y with a dif-
ferent vertex colour. In conclusion, AY is infinite if M (1)

Y,s, . . . ,M
(βs)
Y,s are linearly

dependent for some s ∈ c(I).

Combining Theorem 10.6.3 with Theorem 10.3.6 directly yields the following.

Theorem 10.6.4 (Full Correspondence for RDAGmodels, [MRS21, Theorem A.2]).
Consider the RDAG model on (G, c) with compatible colouring c and sample ma-
trix Y ∈ Km×n. Then stability under A(G, c)SL relates to ML estimation:

(a) Y unstable ⇔ `Y unbounded from above
(b) Y semistable ⇔ `Y bounded from above
(c) Y polystable ⇔ MLE exists
(d) Y stable ⇔ MLE exists uniquely.

Theorem 10.6.4 applies to any DAG model, see Remark 10.1.10. Therefore,
Theorem 10.6.4 generalizes Theorem 9.5.9 in two steps. First, it extends from
transitive DAGs (i.e., A(G) is a group) to all DAGs (i.e., A(G) a set). Second, it
generalizes from uncoloured DAG models to RDAG models.

Now, we link the stabilizing set AY (see Equation (8.2)) to the set of MLEs
given Y . Recall that in the case of Gaussian group models given by a self-adjoint
group G such a connection is made in Proposition 9.3.3. For its proof Kempf-
Ness, Theorem 2.2.13(b), was crucial. To be able to adapt the proof method, the
next lemma serves as a substitute of the Kempf-Ness theorem.

Lemma 10.6.5 ([MRS21, Lemma A.8]). Consider the RDAG model on (G, c)
where colouring c is compatible. For A := A(G, c)SL let T and U be the set of
diagonal respectively unipotent matrices in A. If Y ∈ Km×n is polystable under
A, then the following hold:

(a) U · Y contains a unique element Ỹ of minimal norm.

(b) For t ∈ T and u ∈ U , ‖tu·Y ‖ ≥ ‖t·Ỹ ‖ with equality if and only if u·Y = Ỹ .

(c) Let a, ã ∈ A be such that a · Y and ã · Y are of minimal norm in A · Y .
Then there is some t ∈ T such that t†t = Im and ta · Y = ã · Y .

Proof. We often use Lemma 10.1.8 in this proof without explicitly referencing it.
Since c(E) a disjoint union of the prc(s), s ∈ c(I), when minimizing

‖uY ‖2 =
∑
s∈c(I)

∥∥∥M (0)
uY,s

∥∥∥2 (10.12)
=

∑
s∈c(I)

∥∥∥M (0)
Y,s +

∑
t∈[βs]

us,tM
(t)
Y,s

∥∥∥2

over u ∈ U we can minimize each summand separately. For each s ∈ c(I), the
affine space M (0)

Y,s + span
{
M

(t)
Y,s : t ∈ [βs]

}
has a unique element of minimal norm,

call it Ms. Hence, U · Y has a unique element of minimal norm Ỹ , determined
by M (0)

Ỹ ,s
= Ms for all s ∈ c(I).17 This shows part (a).

17Note that there may be several u ∈ U with uY = Ỹ , i.e., the uniqueness only refers to Ỹ .
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To prove part (b), we use (the proof of) part (a) to obtain∥∥M (0)
tuY,s

∥∥2
=
∥∥tssM (0)

uY,s

∥∥2
= |tss|2

∥∥M (0)
uY,s

∥∥2 ≥ |tss|2
∥∥M (0)

Ỹ ,s

∥∥2
=
∥∥M (0)

tỸ ,s

∥∥2 (10.18)

for all s ∈ c(I), hence ‖tu · Y ‖ ≥ ‖tỸ ‖. The latter inequality is strict if and
only if there is strict inequality in (10.18) for at least one s. By |tss|2 > 0 and
uniqueness of Ỹ , this is the case if and only if uY 6= Ỹ .

For (c), write a = tu with t ∈ T and u ∈ U . Since aY is of minimal norm in
A · Y , we deduce uY = Ỹ using (b). Thus, aY ∈ T · Ỹ and similarly ãY ∈ T · Ỹ .
As T · Ỹ ⊆ A · Y the matrices aY and ãY are also of minimal norm in T · Ỹ .
Recall that T ∼= {(tss)s∈c(I) ∈ (K×)|c(I)| |

∏
s t
αs
ss = 1} is a diagonalizable group. In

particular, T is reductive. Hence, Kempf-Ness, Theorem 2.2.13(b), for the action
of T implies that there is some t ∈ T with t†t = Im and taY = ãY .

We finish the section with an alternative description of the set of MLEs via
the stabilizing set AY .

Proposition 10.6.6 ([MRS21, Proposition A.3]). Fix the RDAG model on (G, c)
with compatible colouring c and set A := A(G, c)SL. Let λa†a be an MLE given
Y , where a ∈ A and λ > 0 as in Theorem 8.2.3. Then we have a bijection

AY → {MLEs given Y}, â 7→ λ(a+ â− Im)†(a+ â− Im) .

Proof. As usual, let T and U be the set of diagonal respectively unipotent matrices
in A. If aY = Y for some a ∈ A, then Equation (10.12) becomes

M
(0)
Y,s = as,sM

(0)
Y,s +

∑
t∈[βs]

as,tM
(t)
Y,s.

We haveM (0)
Y,s /∈ span

{
M

(t)
Y,s : t ∈ [βs]

}
for all s ∈ c(I), since Y is polystable. Thus,

as,s = 1 for all s, i.e., a ∈ U and therefore AY = UY . We set NY := UY − Im,
which consists of strictly upper triangular matrices. It suffices to show that for
fixed MLE λa†a the map

ϕ : NY → {MLEs given Y }
b 7→ λ(a+ b)†(a+ b)

is well-defined and bijective. For the latter, note that bY = 0 for any b ∈ NY .
Therefore, (a + b)Y = aY is of minimal norm in A · Y and thus ϕ(b) is also an
MLE by the weak correspondence, Theorem 8.2.3.

For surjectivity, let λã†ã be another MLE given Y . Then aY and ãY are of
minimal norm in A · Y , hence there is some t ∈ T with t†t = Im and aY = tãY
by Lemma 10.6.5(c). We set b := tã − a so that b · Y = 0 and (Im +b)Y = Y .
By Lemma 10.1.8(iii), we have tã ∈ A and thus all entries of b = tã− a obey the
colouring c. Thus, we can also use Equation (10.12) for bY = 0:

0 = M
(0)
bY,s = bs,sM

(0)
Y,s +

∑
t∈[βs]

bs,tM
(t)
Y,s.
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The latter implies bs,s = 0 for all s ∈ c(I) by polystability of Y , hence b ∈ NY .
We compute ϕ(b) = λ(tã)†(tã) = λã†ã using t†t = Im.

To show injectivity, let b, b′ ∈ NY be such that ϕ(b) = ϕ(b′). Let t ∈ T be
defined by ts,s = as,s/|as,s|. Then t†t = Im and thus

(ta+ tb)†(ta+ tb) = (a+ b)†t†t(a+ b) = (a+ b)†(a+ b).

Similarly, (ta+ tb′)†(ta+ tb′) = (a+ b′)†(a+ b′). Therefore, ϕ(b) = ϕ(b′) implies

(ta+ tb)†(ta+ tb) = (ta+ tb′)†(ta+ tb′). (10.19)

Moreover, tb and tb′ are strictly upper triangular and ta ∈ A has positive diagonal
entries |as,s|, by construction of t. Hence, applying uniqueness of the Cholesky
decomposition to (10.19) gives ta+ tb = ta+ tb′, and we deduce b = b′.

10.7 Connections to Gaussian group models

Although many presented results on RDAGs do not need a group structure on
A(G, c) (see Equation (10.1)) we have more tools available if A(G, c) is a group.18
In this section we illustrate this as follows. We use Popov’s Criterion from Sec-
tion 2.4 to study polystability of a sample matrix Y . Moreover, we give a de-
scription of the set of MLEs in an RDAG model via the action of the stabilizer
from Proposition 9.2.4. We start with the butterfly criterion, which characterizes
when A(G, c) is a subgroup of GLm(K).

The Butterfly Criterion

Recall that for a DAG G the DAG model is Mg

A(G), see Lemma 9.5.2, and in
view of Gaussian group models it was natural to ask when A(G) is a group. By
Proposition 9.5.4, the latter is the case if and only if G is transitive.

Similarly, we have seen that the RDAG model of a coloured DAG (G, c) with
compatible colouring c equals Mg

A(G,c), compare Proposition 10.1.9. Thus one
may ask for an analogous characterization when A(G, c) is a group. For this, we
define the concept of a butterfly graph.

Definition 10.7.1 (Butterfly graph). Let (G, c) be a coloured DAG. For a pair
of vertices i, j ∈ [m], define the butterfly body as

b(ij) :=
{
k ∈ [m] | i← k, k ← j in G

}
.

The butterfly graph Gb(ij) is defined as the coloured subgraph on {i}∪{j}∪ b(ij),
with edges i← k, k ← j for each k ∈ b(ij), and colours inherited from c. N

Example 10.7.2. Consider the coloured DAG
18In fact, Visu Makam, Anna Seigal and myself first studied RDAG models where A(G, c)

was assumed to be a group. The results on TDAG models as Gaussian group models served as
a guideline and this perspective fostered our understanding to obtain many results of [MRS21].
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2 3

1 6

4 5

which has

2

3

1 6

4

5

as butterfly graph Gb(1,6). We point out that the brown (dotted) edges do not
appear in the butterfly graph. ♦

We can characterize when A(G, c) is a group via the butterfly graphs.

Proposition 10.7.3 (Butterfly Criterion [MRS21, Proposition B.2]).
Consider the RDAG model on (G, c) where colouring c is compatible. The set
A(G, c) is a group if and only if

(a) G is transitive; and

(b) if c(ij) = c(kl) for edges j → i, l → k in G, then Gb(ij) ' Gb(kl).

Remark 10.7.4. Given a DAG G, we know from Remark 10.1.10 that there is
a compatible colouring c on G such that M→

G = M→
(G,c) and A(G) = A(G, c).

Since this colouring c assigns to each edge its own distinct colour, item (b) of
Proposition 10.7.3 is trivially satisfied. Thus, the Butterfly Criterion contains
Proposition 9.5.4 as a special case. O

Proof of Proposition 10.7.3. By definition in Equation (10.1), Im ∈ A(G, c) and
there is a K-linear subspace L ⊆ Km×m such that A(G, c) = L∩GLm(K). Hence,
by Lemma 9.5.3 A(G, c) is a subgroup of GLm(K) if and only if A(G, c) is closed
under multiplication. We have gh ∈ A(G, c) for g, h ∈ A(G, c) if and only if

(1) (gh)ii = (gh)jj whenever c(i) = c(j);

(2) (gh)ij = (gh)kl whenever j → i, l→ k in G have c(ij) = c(kl); and

(3) (gh)ij = 0 whenever j 6→ i in G.

For (1), observe that (gh)ii = giihii. Thus, if c(i) = c(j) then (gh)ii = (gh)jj.
For (2), take j → i, l→ k in G with c(ij) = c(kl). Then

(gh)ij = giihij + gijhjj +
∑
p∈b(ij)

giphpj and (gh)kl = gkkhkl + gklhll +
∑
q∈b(kl)

gkqhql,

hence (gh)ij = (gh)kl if Gb(ij) ' Gb(kl). Conversely, assume (gh)ij = (gh)kl as a
polynomial identity in the unknown entries of matrices g and h. As colouring c
is compatible and c(ij) = c(kl), we have c(i) = c(k), so giihij = gkkhkl. Vertex
and edge colours are disjoint and the sums over b(ij) and b(kl) only involve edge
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colours. Thus, (gh)ij = (gh)kl implies gijhjj = gklhll, so hjj = hll, and the sum
over b(ij) must equal the sum over b(kl). This means c(j) = c(l), and the two
collections (c(ip), c(pj)), p ∈ b(ij) and (c(kq), c(ql)), q ∈ b(kl) of ordered pairs19
counted with multiplicity agree. Compatibility ensures the correct colours on the
vertices in b(ij) and b(kl) as well, hence Gb(ij) ' Gb(kl).

For (3), we observe that if j 6→ i in G then gij = 0 = hij and therefore
(gh)ij =

∑
p∈b(ij) giphpj. The latter is zero for all g, h ∈ A(G, c) if and only if

b(ij) = ∅. Thus, condition (3) is equivalent to the following: if j 6→ i in G, then
there does not exist p ∈ I with j → p and p → i in G, i.e., G must be transitive
by contraposition. We have shown that (1), (2) and (3) are satisfied if and only
if conditions (a) and (b) hold.

The following example illustrates that the order of the colours c(i ← k) and
c(k ← j) for k ∈ b(ij) in the butterfly graph Gb(ij) indeed matters.

Example 10.7.5. Consider the coloured TDAG (G, c) given by

1 2 4 5

3 6

The colouring is compatible as all vertices are black (squared). The butterfly
graphs Gb(1,3) and Gb(4,6) for the green (squiggly) edges are

1 2 3 and 4 5 6

respectively. Due to the different order of red (solid) and orange (dashed) arrows
the butterfly graphs Gb(1,3) and Gb(4,6) are not isomorphic. Thus, A(G, c) is not a
group by the Butterfly Criterion. This can also be checked by hand. Consider the
block-diagonal matrices a := diag(M1,M2), b := diag(M2,M1) ∈ A(G, c), where

M1 :=

1 0 0
0 1 1
0 0 1

 and M2 :=

1 1 0
0 1 0
0 0 1

 .

Thus, a has entry one for red (solid) and entry zero for orange (dashed) and
green (squiggly), while b has entry one for orange (dashed) and entry zero for
red (solid) and green (squiggly). We compute (ab)1,3 = (M1M2)1,3 = 0 and
(ab)4,6 = (M2M1)1,3 = 1. Therefore, the matrix ab violates the green (squiggly)
colour condition. Hence, ab /∈ A(G, c) and so A(G, c) is not a group. ♦

Example 10.7.6 ([MRS21, Example B.3]). Interestingly, two graphs can have
all the same butterfly graphs without being isomorphic. We present an example.
Consider the following coloured graph with 10 black (square) vertices, and edges
that are red (solid), green (squiggly), orange (dashed) or brown (dotted).

19The order matters, since the variables in the entries of g are distinct from those in h. Also
compare Example 10.7.5 for an illustration.



10.7. Connections to Gaussian group models 239

c1 b1

c2 b2

d1 a1

c3 b3

c4 b4

We add some further edges: four purple edges a1 → ci, four blue edges bi → d1,
and a yellow edge a1 → d1. Now, additionally consider the graph obtained by
exchanging the green (squiggly) and orange (dashed) edges.

The butterfly graphs for the two graphs are the same, as follows. On the
yellow edge, the butterfly graphs both have four paths consisting of a brown edge
followed by a blue edge, and four that are a purple edge followed by a brown
edge. Similarly, we can check the butterfly graphs at the other edge colours.

However, the two coloured graphs are not isomorphic. Indeed, the only way
to get an isomorphism is to permute the b-layer and the c-layer. The red (solid)
edges give the identity permutation, the orange (dashed) edges give the cycle
σ = (1 4 3 2), and the green (squiggly) edges give σ2. Hence an isomorphism
would need to consist of permutations τ1 and τ2 of {1, 2, 3, 4} with τ1idτ2 = id,
τ1στ2 = σ2, τ1σ

2τ2 = σ. The first condition implies τ2 = τ−1
1 , hence σ and σ2 need

to be simultaneously conjugate to σ2 and σ respectively. This implies (σ2)2 = σ,
a contradiction because σ4 = id. ♦

Popov’s Criterion for RDAGs

If A(G, c) is a group we can prove the important Lemma 10.6.2 on polystabil-
ity differently. Namely, we generalize the proof of Theorem 9.5.8(b) for TDAG
models, where we used Popov’s Criterion, Theorem 2.4.1. We stress that during
the work on [MRS21] this generalization process led to the concept of augmented
sample matrices MY,s, which are crucial for several main results on RDAG mod-
els. It illustrates once more how the invariant theory perspective can foster the
statistical understanding.

Let (G, c) be a coloured DAG with compatible colouring. Recall that it suffices
to work over C when using Popov’s Criterion, compare Lemma 2.4.3. Assume
that A(G, c) ⊆ GLm(C) is a group. Hence, G := A(G, c)SL is a group as well and
we denote the subgroup of diagonal matrices in G by T . Then T is isomorphic
to the diagonalizable group

{
(λs,s)s ∈ (C×)|c(I)| |

∏
s λ

αs
s,s = 1

}
.

We briefly recall the setting of Section 2.4 for the special case of RDAGs. The
group G acts on Cm×n by left-multiplication and xi,j ∈ C[G], i, j ∈ [m] are the
coordinate functions on G. By compatibility and similarly to Lemma 10.1.8, we



240 Chapter 10. Restricted DAG Models

can consider the coordinate functions for the colour entries zs,s and zs,t, where
s ∈ c(I) and t ∈ prc(s). They capture the equalities among the xi,j, i.e., zs,s = xi,i
whenever c(i) = s and zs,t = xi,j whenever c(ij) = (s, t). For Y ∈ Cm×n, we recall
from Equation (2.28) the C-algebra

RY = C
[ m∑
j=1

Yj,l xi,j

∣∣∣ i ∈ [m], l ∈ [n]
]
⊆ C[G].

Using the equalities among the xi,j and that xi,j = 0 if j /∈ {i} ∪ pa(i), we can
rewrite the algebra generators of RY as follows:

m∑
j=1

xi,jYj,l = zc(ii)Yi,l +
∑
j∈pa(i)

zc(ij)Yj,l = zs,sYi,l +

βs∑
t=1

zs,t

( ∑
i←j

c(ij)=t

Yj,l

)
, (10.20)

where s := c(i). The character group of T is X(T ) ∼= Z|c(I)|/
(
Z · (αs)s∈c(I)

)
, so

that the semigroup XG·Y can be written as

XG·Y =

{
(ds)s∈c(I) ∈ X(T )

∣∣∣ ∏
s∈c(I)

zdss,s ∈ RY

}
.

Remark 10.7.7 ([MRS21, Remark B.5]). The group G = A(G, c)SL ⊆ GLm(C)
may not be connected as required in Popov’s Criterion, Theorem 2.4.1. However,
the orbit G ·Y is Zariski-closed if G◦ ·Y is Zariski-closed, where G◦ is the identity
component of G.20 Thus, after restricting to G◦ = T ◦U we may assume that G
is connected. Restricting to T ◦ amounts to restricting to the torsion-free part
of X(T ), compare Proposition 1.1.17(c). If α is the greatest common divisor of
all αs, s ∈ c(I), then T ◦ ∼=

{
(gs)s∈c(I) |

∏
s g

αs/α
s = 1

}
and X(T ◦) = Z|c(I)|/

(
Z ·

(αs/α)s∈c(I)
)
. O

We are ready to generalize the proof of Theorem 9.5.8(b) to the RDAG situ-
ation. This reproves the part on polystability in Lemma 10.6.2.21

Lemma 10.7.8. Consider the RDAG model on (G, c) where colouring c is com-
patible. Assume A(G, c) ⊆ GLm(K) is a group and set G := A(G, c)SL. Let
Y ∈ Km×n be such that M (0)

Y,s /∈ span
{
M

(1)
Y,s, . . . ,M

(βs)
Y,s

}
for all s ∈ c(I). Then Y

is polystable under G.

Proof. The assumption ensures that Y 6= 0, so we need to show that G · Y is
Euclidean closed in Km×n. By Lemma 2.4.3, it is enough to prove that G · Y is
Zariski closed for K = C. We will use Popov’s Criterion for this.

Fix a vertex colour s ∈ c(I). Since M (0)
Y,s /∈ span

{
M

(1)
Y,s, . . . ,M

(βs)
Y,s

}
, we can

apply Lemma 9.5.7 to the matrix MY,s ∈ C(1+βs)×αsn, and for zs,s and the zs,t,
t ∈ [βs]. Hence, there is w ∈ Cαsn with

zs,s =
αsn∑
p=1

wp

(
zs,s
(
MY,s

)
0,p

+

βs∑
t=1

zs,t
(
MY,s

)
t,p

)
. (10.21)

20Recall that Zariski and Euclidean identity component agree over C, compare Section 1.1
21For K = R the argument only ensures that the orbit is Euclidean closed.
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Fix some p ∈ [αsn]. By the construction of MY,s in Definition 10.3.1, there exists
a vertex i = i(p) of colour s and some l = l(p) ∈ [n] such that

zs,s
(
MY,s

)
0,p

+

βs∑
t=1

zs,t
(
MY,s

)
t,p

= zs,sYi,l +

βs∑
t=1

zs,t

( ∑
i←j

c(ij)=t

Yj,l

)
(10.20)

=
m∑
j=1

xi,jYj,l .

Thus, (10.21) shows that zs,s is a C-linear combination of the
∑m

j=1 xi,jYj,l, where
i ∈ c−1(s) and l ∈ [n]. In particular, zs,s ∈ RY for all s ∈ c(I) and hence we have

∀(ds)s ∈ Z|c(I)|≥0 :
∏
s∈c(I)

zdss,s ∈ RY .

Any character of T is of the latter form, since
∏

s z
αs
ss is the trivial character.22

We conclude XG·Y = X(T ) and hence XG·Y is a group. Therefore, G ·Y is Zariski
closed by Popov’s Criterion, Theorem 2.4.1.

Bijection between the Stabilizer and the Set of MLEs

So far we have given two descriptions of the MLEs given Y in an RDAG model.
Corollary 10.3.9 gives a linear space of possible Λ, while Proposition 10.6.6 gives
an additive bijection between the set of MLEs and the A(G, c)SL-stabilizing set.

Here we give an alternative (multiplicative) bijection. Namely, for a Gaussian
group modelMg

G we have a natural action of the GSL-stabilizer of Y on the set of
MLEs given Y , compare Proposition 9.2.4. For Zariski closed self-adjoint groups
we have seen in Proposition 9.3.3 that this action is transitive. In the RDAG
case the action is even transitive and free. The following statement contains
Proposition 9.5.10 as a special case, since any TDAG G arises as a coloured DAG
(G, c) with compatible colouring such that the group A(G) equals A(G, c), see
Remark 10.1.10.

Proposition 10.7.9 ([MRS21, Proposition B.6]). Consider the RDAG model
on (G, c) where colouring c is compatible and assume A(G, c) is a group. Set
A := A(G, c)SL and let Y ∈ Km×n be polystable under A. Let λa†a be an MLE
given Y , where a ∈ A and λ ∈ R>0 are as in Theorem 8.2.3. We have a bijection

ϕ : AY → {MLEs given Y }
g 7→ λg†a†ag.

In other words, AY acts freely and transitively on the set of MLEs given Y .

Proof. For g ∈ AY we have agY = aY , which is of minimal norm in A·Y as λa†a
is an MLE. Hence, ϕ(g) = λ(ag)†(ag) is another MLE given Y , by Theorem 8.2.3,
and we see that ϕ is well-defined.

For surjectivity, let λã†ã be another MLE given Y . Then aY and ãY are
of minimal norm in A · Y , hence there is some t ∈ T with t†t = Im such that

22In other words, any element of X(T ) ∼= Z|c(I)|/
(
Z · (αs)s∈c(I)

)
admits a representative with

non-negative entries.
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taY = ãY , by Lemma 10.6.5(c). Thus, for g := a−1t−1ã we have gY = Y and
also g ∈ A, since A(G, c) (and hence A) is a group. Hence, g ∈ AY and the
property t†t = Im gives ϕ(g) = λg†a†ag = λã†ã.

To prove injectivity, let g, g′ ∈ AY be such that ϕ(g) = ϕ(g′). The latter
implies g†a†ag = g′†a†ag′, which is equivalent to h†h = Im where h := ag′g−1a−1.
In the following we show that h = Im which implies g = g′ as desired.

First, as A is a group we have h ∈ A. In particular, h is upper triangular.
Together with h†h = Im, h is a diagonal matrix by Lemma 10.7.10 below. More-
over, using g, g′ ∈ AY we deduce haY = aY , i.e., h ∈ AaY . Note that Y and aY
have the same orbit (closure), where we again use that A is a group. Thus, aY is
polystable as Y is polystable. In particular, for all vertex colours s we must have
M

(0)
aY,s 6= 0 by Theorem 10.6.3(b). Finally, combining the latter with Eq. (10.12)

for M (0)
h·(aY ), h(aY ) = aY and h being diagonal implies h = Im.

We are left to show the following lemma.

Lemma 10.7.10. Let h ∈ GLm(K) be upper triangular with h†h = Im. Then h
is a diagonal matrix.

Proof. We prove the statement by induction on m ≥ 1. For m = 1, there is
nothing to show as any 1×1 matrix is diagonal. Now, assume the statement holds
for a fixed m ≥ 1 and let h ∈ GLm+1(K) be upper triangular with h†h = Im+1.
Then we have for all j ∈ [m+ 1] that

(
h†h
)

1,j
=

m+1∑
k=1

hk,i hk,j = h1,1 h1,j =

{
1 , if j = 1

0 , if j 6= 1

where we used in the middle equality that h is upper triangular. We deduce
that h1,1 6= 0 and consequently for j ≥ 2 we must have h1,j = 0. Hence, h is a
block-diagonal matrix of the form diag(1, g) with g ∈ GLm(K). The properties of
h yield that g must be upper triangular with g†g = Im. By induction hypothesis,
g is diagonal and therefore h as well.
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